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Chapter 1

Package R and Simple Applications

1.1 Computational Toolkits

When you work with large data sets, messy data handling, models, etc, you need to choose

the computational tools that are useful for dealing with these kinds of problems. There are

“menu driven systems” where you click some buttons and get some work done - but these

are useless for anything nontrivial. To do serious economics and finance in the modern days,

you have to write computer programs. And this is true of any field, for example, applied

econometrics, empirical macroeconomics - and not just of “computational finance” which is

a hot buzzword recently.

The question is how to choose the computational tools. According to Ajay Shah (De-

cember 2005), you should pay attention to three elements: price, freedom, elegant and

powerful computer science, and network effects. Low price is better than high price.

Price = 0 is obviously best of all. Freedom here is in many aspects. A good software system

is one that does not tie you down in terms of hardware/OS, so that you are able to keep

moving. Another aspect of freedom is in working with colleagues, collaborators and students.

With commercial software, this becomes a problem, because your colleagues may not have

the same software that you are using. Here free software really wins spectacularly. Good

practice in research involves a great accent on reproducibility. Reproducibility is important

both so as to avoid mistakes, and because the next person working in your field should be

standing on your shoulders. This requires an ability to release code. This is only possible

with free software. Systems like SAS and Gauss use archaic computer science. The code

is inelegant. The language is not powerful. In this day and age, writing C or Fortran by

hand is “too low level”. Hell, with Gauss, even a minimal ting like online help is tawdry.

1



CHAPTER 1. PACKAGE R AND SIMPLE APPLICATIONS 2

One prefers a system to be built by people who know their computer science - it should be

an elegant, powerful language. All standard CS knowledge should be nicely in play to give

you a gorgeous system. Good computer science gives you more productive humans. Lots of

economists use Gauss, and give out Gauss source code, so there is a network effect in favor

of Gauss. A similar thing is right now happening with statisticians and R.

Here I cite comparisons among most commonly used packages (see Ajay Shah (December

2005)); see the web site at

http://www.mayin.org/ajayshah/COMPUTING/mytools.html.

R is a very convenient programming language for doing statistical analysis and Monte

Carol simulations as well as various applications in quantitative economics and finance.

Indeed, we prefer to think of it of an environment within which statistical techniques are

implemented. I will teach it at the introductory level, but NOTICE that you will have to

learn R on your own. Note that about 97% of commands in S-PLUS and R are same. In

particular, for analyzing time series data, R has a lot of bundles and packages, which can

be downloaded for free, for example, at http://www.r-project.org/.

R, like S, is designed around a true computer language, and it allows users to add

additional functionality by defining new functions. Much of the system is itself written in

the R dialect of S, which makes it easy for users to follow the algorithmic choices made.

For computationally-intensive tasks, C, C++ and Fortran code can be linked and called

at run time. Advanced users can write C code to manipulate R objects directly.

1.2 How to Install R ?

(1) go to the web site http://www.r-project.org/;

(2) click CRAN;

(3) choose a site for downloading, say http://cran.cnr.Berkeley.edu;

(4) click Windows (95 and later);

(5) click base;

(6) click R-2.5.1-win32.exe (Version of 06-28-2007) to save this file first and then run it

to install.

The basic R is installed into your computer. If you need to install other packages, you need
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to do the followings:

(7) After it is installed, there is an icon on the screen. Click the icon to get into R;

(8) Go to the top and find packages and then click it;

(9) Go down to Install package(s)... and click it;

(10) There is a new window. Choose a location to download the packages, say USA(CA1),

move mouse to there and click OK;

(11) There is a new window listing all packages. You can select any one of packages and

click OK, or you can select all of them and then click OK.

1.3 Data Analysis and Graphics Using R – An Intro-

duction (109 pages)

See the file r-notes.pdf (109 pages) which can be downloaded from

http://www.math.uncc.edu/˜ zcai/r-notes.pdf.

I encourage you to download this file and learn it by yourself.

1.4 CRAN Task View: Empirical Finance

This CRAN Task View contains a list of packages useful for empirical work in Finance,

grouped by topic. Besides these packages, a very wide variety of functions suitable for em-

pirical work in Finance is provided by both the basic R system (and its set of recommended

core packages), and a number of other packages on the Comprehensive R Archive Network

(CRAN). Consequently, several of the other CRAN Task Views may contain suitable pack-

ages, in particular the Econometrics Task View. The web site is

http://cran.r-project.org/src/contrib/Views/Finance.html

1. Standard regression models: Linear models such as ordinary least squares (OLS)

can be estimated by lm() (from by the stats package contained in the basic R distri-

bution). Maximum Likelihood (ML) estimation can be undertaken with the optim()

function. Non-linear least squares can be estimated with the nls() function, as well

as with nlme() from the nlme package. For the linear model, a variety of regression

diagnostic tests are provided by the car, lmtest, strucchange, urca, uroot, and

sandwich packages. The Rcmdr and Zelig packages provide user interfaces that may

be of interest as well.
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2. Time series: Classical time series functionality is provided by the arima() and

KalmanLike() commands in the basic R distribution. The dse packages provides

a variety of more advanced estimation methods; fracdiff can estimate fractionally in-

tegrated series; longmemo covers related material. For volatily modeling, the stan-

dard GARCH(1,1) model can be estimated with the garch() function in the tseries

package. Unit root and cointegration tests are provided by tseries, urca and uroot.

The Rmetrics packages fSeries and fMultivar contain a number of estimation func-

tions for ARMA, GARCH, long memory models, unit roots and more. The ArDec

implements autoregressive time series decomposition in a Bayesian framework. The

dyn and dynlm are suitable for dynamic (linear) regression models. Several packages

provide wavelet analysis functionality: rwt, wavelets, waveslim, wavethresh. Some

methods from chaos theory are provided by the package tseriesChaos.

3. Finance: The Rmetrics bundle comprised of the fBasics, fCalendar, fSeries,

fMultivar, fPortfolio, fOptions and fExtremes packages contains a very large num-

ber of relevant functions for different aspect of empirical and computational finance.

The RQuantLib package provides several option-pricing functions as well as some

fixed-income functionality from the QuantLib project to R. The portfolio package

contains classes for equity portfolio management.

4. Risk Management: The VaR package estimates Value-at-Risk, and several pack-

ages provide functionality for Extreme Value Theory models: evd, evdbayes, evir,

extRremes, ismec, POT. The mvtnorm package provides code for multivariate

Normal and t-distributions. The Rmetrics packages fPortfolio and fExtremes also

contain a number of relevant functions. The copula and fgac packages cover multi-

variate dependency structures using copula methods.

5. Data and Date Management: The its, zoo and fCalendar (part of Rmetrics)

packages provide support for irregularly-spaced time series. fCalendar also addresses

calendar issues such as recurring holidays for a large number of financial centers, and

provides code for high-frequency data sets.

Related links:
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* CRAN Task View: Econometrics. The web site is

http://cran.cnr.berkeley.edu/src/contrib/Views/Econometrics.html

or see the next section.

* Rmetrics by Diethelm Wuertz contains a wealth of R code for Finance. The

web site is

http://www.itp.phys.ethz.ch/econophysics/R/

* Quantlib is a C++ library for quantitative finance. The web site is

http://quantlib.org/

* Mailing list: R Special Interest Group Finance

1.5 CRAN Task View: Computational Econometrics

Base R ships with a lot of functionality useful for computational econometrics, in particular

in the stats package. This functionality is complemented by many packages on CRAN,

a brief overview is given below. There is also a considerable overlap between the tools for

econometrics in this view and finance in the Finance view. Furthermore, the finance SIG is

a suitable mailing list for obtaining help and discussing questions about both computational

finance and econometrics. The packages in this view can be roughly structured into the

following topics. The web site is

http://cran.r-project.org/src/contrib/Views/Econometrics.html

1. Linear regression models: Linear models can be fitted (via OLS) with lm() (from

stats) and standard tests for model comparisons are available in various methods such

as summary() and anova(). Analogous functions that also support asymptotic tests

(z instead of t tests, and Chi-squared instead of F tests) and plug-in of other covari-

ance matrices are coeftest() and waldtest() in lmtest. Tests of more general linear

hypotheses are implemented in linear.hypothesis() in car. HC and HAC covariance

matrices that can be plugged into these functions are available in sandwich. The pack-

ages car and lmtest also provide a large collection of further methods for diagnostic

checking in linear regression models.

2. Microeconometrics: Many standard micro-econometric models belong to the family

of generalized linear models (GLM) and can be fitted by glm() from package stats. This
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includes in particular logit and probit models for modelling choice data and poisson

models for count data. Negative binomial GLMs are available via glm.nb() in pack-

age MASS from the VR bundle. Zero-inflated count models are provided in zicounts.

Further over-dispersed and inflated models, including hurdle models, are available in

package pscl. Bivariate poisson regression models are implemented in bivpois. Basic

censored regression models (e.g., tobit models) can be fitted by survreg() in survival.

Further more refined tools for microecnometrics are provided in micEcon. The pack-

age bayesm implements a Bayesian approach to microeconometrics and marketing.

Inference for relative distributions is contained in package reldist.

3. Further regression models: Various extensions of the linear regression model and

other model fitting techniques are available in base R and several CRAN packages.

Nonlinear least squares modelling is available in nls() in package stats. Relevant

packages include quantreg (quantile regression), sem (linear structural equation mod-

els, including two-stage least squares), systemfit (simultaneous equation estimation),

betareg (beta regression), nlme (nonlinear mixed-effect models), VR (multinomial

logit models in package nnet) and MNP (Bayesian multinomial probit models). The

packages Design and Hmisc provide several tools for extended handling of (general-

ized) linear regression models.

4. Basic time series infrastructure: The class ts in package stats is R’s standard

class for regularly spaced time series which can be coerced back and forth without

loss of information to zooreg from package zoo. zoo provides infrastructure for both

regularly and irregularly spaced time series (the latter via the class “zoo” ) where the

time information can be of arbitrary class. Several other implementations of irregular

time series building on the “POSIXt” time-date classes are available in its, tseries and

fCalendar which are all aimed particularly at finance applications (see the Finance

view).

5. Time series modelling: Classical time series modelling tools are contained in the

stats package and include arima() for ARIMA modelling and Box-Jenkins-type anal-

ysis. Furthermore stats provides StructTS() for fitting structural time series and

decompose() and HoltWinters() for time series filtering and decomposition. For

estimating VAR models, several methods are available: simple models can be fitted
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by ar() in stats, more elaborate models are provided by estVARXls() in dse and

a Bayesian approach is available in MSBVAR. A convenient interface for fitting dy-

namic regression models via OLS is available in dynlm; a different approach that also

works with other regression functions is implemented in dyn. More advanced dynamic

system equations can be fitted using dse. Unit root and cointegration techniques are

available in urca, uroot and tseries. Time series factor analysis is available in tsfa.

6. Matrix manipulations: As a vector- and matrix-based language, base R ships with

many powerful tools for doing matrix manipulations, which are complemented by the

packages Matrix and SparseM.

7. Inequality: For measuring inequality, concentration and poverty the package ineq

provides some basic tools such as Lorenz curves, Pen’s parade, the Gini coefficient and

many more.

8. Structural change: R is particularly strong when dealing with structural changes

and changepoints in parametric models, see strucchange and segmented.

9. Data sets: Many of the packages in this view contain collections of data sets from

the econometric literature and the package Ecdat contains a complete collection of

data sets from various standard econometric textbooks. micEcdat provides several

data sets from the Journal of Applied Econometrics and the Journal of Business &

Economic Statistics data archives. Package CDNmoney provides Canadian monetary

aggregates and pwt provides the Penn world table.

Related links:

* CRAN Task View: Finance. The web site is

http://cran.cnr.berkeley.edu/src/contrib/ Views/Finance.html

or see the above section.

* Mailing list: R Special Interest Group Finance

* A Brief Guide to R for Beginners in Econometrics. The web site is

http://people.su.se/˜ ma/R−intro/.
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* R for Economists. The web site is

http://www.mayin.org/ajayshah/KB/R/R−for−economists.html.



Chapter 2

Regression Models With Correlated
Errors

2.1 Methodology

In many applications, the relationship between two time series is of major interest. The

market model in finance is an example that relates the return of an individual stock to

the return of a market index. The term structure of interest rates is another example in

which the time evolution of the relationship between interest rates with different maturities

is investigated. These examples lead to the consideration of a linear regression in the form

yt = β1 + β2 xt + et, where yt and xt are two time series and et denotes the error term. The

least squares (LS) method is often used to estimate the above model. If {et} is a white

noise series, then the LS method produces consistent estimates. In practice, however, it is

common to see that the error term et is serially correlated. In this case, we have a regression

model with time series errors, and the LS estimates of β1 and β2 may not be consistent and

efficient.

Regression model with time series errors is widely applicable in economics and finance, but

it is one of the most commonly misused econometric models because the serial dependence

in et is often overlooked. It pays to study the model carefully. The standard method for

dealing with correlated errors et in the regression model

yt = βT zt + et (2.1)

is to try to transform the errors et into uncorrelated ones and then apply the standard least

squares approach to the transformed observations. For example, let P be an n × n matrix

9
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that transforms the vector e = (e1, · · · , en)T into a set of independent identically distributed

variables with variance σ2. Then, the matrix version of (2.1) is

Py = PZβ + Pe

and proceed as before. Of course, the major problem is deciding on what to choose for P

but in the time series case, happily, there is a reasonable solution, based again on time series

ARMA models. Suppose that we can find, for example, a reasonable ARMA model for the

residuals, say, for example, the ARMA(p, 0, 0) model

et =

p∑

k=1

φk et + wt,

which defines a linear transformation of the correlated et to a sequence of uncorrelated wt.

We can ignore the problems near the beginning of the series by starting at t = p. In the

ARMA notation, using the back-shift operator B, we may write

φ(L) et = wt, (2.2)

where

φ(L) = 1 −
p∑

k=1

φk L
k (2.3)

and applying the operator to both sides of (2.1) leads to the model

φ(L) yt = φ(L) zt + wt, (2.4)

where the {wt}’s now satisfy the independence assumption. Doing ordinary least squares

on the transformed model is the same as doing weighted least squares on the untransformed

model. The only problem is that we do not know the values of the coefficients φk (1 ≤ k ≤ p)

in the transformation (2.3). However, if we knew the residuals et, it would be easy to estimate

the coefficients, since (2.3) can be written in the form

et = φT et−1 + wt, (2.5)

which is exactly the usual regression model (2.1) with φ = (φ1, · · · , φp)
T replacing β and

et−1 = (et−1, et−2, · · · , et−p)
T replacing zt. The above comments suggest a general approach

known as the Cochran-Orcutt (1949) procedure for dealing with the problem of correlated

errors in the time series context.
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1. Begin by fitting the original regression model (2.1) by least squares, obtaining β and

the residuals et = yt − β̂
T
zt.

2. Fit an ARMA to the estimated residuals, say φ(L) et = θ(L)wt.

3. Apply the ARMA transformation found to both sides of the regression equation (2.1)

to obtain
φ(L)

θ(L)
yt = βT φ(L)

θ(L)
zt + wt.

4. Run an ordinary least squares on the transformed values to obtain the new β.

5. Return to 2. if desired.

Often, one iteration is enough to develop the estimators under a reasonable correlation

structure. In general, the Cochran-Orcutt procedure converges to the maximum likelihood

or weighted least squares estimators.

Note that there is a function in R to compute the Cochrane-Orcutt estimator

arima(x, order = c(0, 0, 0),

seasonal = list(order = c(0, 0, 0), period = NA),

xreg = NULL, include.mean = TRUE, transform.pars = TRUE,

fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"),

n.cond, optim.control = list(), kappa = 1e6)

by specifying “xreg=...”, where xreg is a vector or matrix of external regressors, which must

have the same number of rows as “x”.

Example 3.1: The data shown in Figure 2.1 represent quarterly earnings per share for the

American Company Johnson & Johnson from the from the fourth quarter of 1970 to the first

quarter of 1980. We might consider an alternative approach to treating the Johnson and

Johnson earnings series, assuming that yt = log(xt) = β1 + β2 t+ et. In order to analyze the

data with this approach, first we fit the model above, obtaining β̂1 = −0.6678(0.0349) and

β̂2 = 0.0417(0.0071). The computed residuals et = yt − β̂1 − β̂2 t can be computed easily,

the ACF and PACF are shown in the top two panels of Figure 2.2. Note that the ACF and

PACF suggest that a seasonal AR series will fit well and we show the ACF and PACF of

these residuals in the bottom panels of Figure 2.2. The seasonal AR model is of the form
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0 20 40 60 80
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5

10
15

J&J Earnings

0 20 40 60 80

0
1

2

transformed log(earnings)

Figure 2.1: Quarterly earnings for Johnson & Johnson (4th quarter, 1970 to 1st quarter,
1980, left panel) with log transformed earnings (right panel).
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.5
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0.5
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.5
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1.0

PACF
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ARIMA(1,0,0,)_4
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.5
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Figure 2.2: Autocorrelation functions (ACF) and partial autocorrelation functions (PACF)
for the detrended log J&J earnings series (top two panels)and the fitted ARIMA(0, 0, 0) ×
(1, 0, 0)4 residuals.

et = Φ1 et−4 +wt and we obtain Φ̂1 = 0.7614(0.0639), with σ̂2
w = 0.00779. Using these values,

we transform yt to

yt − Φ̂1 yt−4 = β1(1 − Φ̂1) + β2[t− Φ̂1(t− 4)] + wt

using the estimated value Φ̂1 = 0.7614. With this transformed regression, we obtain the

new estimators β̂1 = −0.7488(0.1105) and β̂2 = 0.0424(0.0018). The new estimator has the
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advantage of being unbiased and having a smaller generalized variance.

To forecast, we consider the original model, with the newly estimated β̂1 and β̂2. We

obtain the approximate forecast for yt
t+h = β̂1+ β̂2(t+h)+e

t
t+h for the log transformed series,

along with upper and lower limits depending on the estimated variance that only incorporates

the prediction variance of et
t+h, considering the trend and seasonal autoregressive parameters

as fixed. The narrower upper and lower limits (The figure is not presented here) are mainly

a refection of a slightly better fit to the residuals and the ability of the trend model to take

care of the nonstationarity.

Example 3:2: We consider the relationship between two U.S. weekly interest rate series: xt:

the 1-year Treasury constant maturity rate and yt: the 3-year Treasury constant maturity

rate. Both series have 1967 observations from January 5, 1962 to September 10, 1999 and

are measured in percentages. The series are obtained from the Federal Reserve Bank of St

Louis.

Figure 2.3 shows the time plots of the two interest rates with solid line denoting the

1-year rate and dashed line for the 3-year rate. The left panel of Figure 2.4 plots yt versus

1970 1980 1990 2000

4
6

8
10

12
14

16

Figure 2.3: Time plots of U.S. weekly interest rates (in percentages) from January 5, 1962
to September 10, 1999. The solid line (black) is the Treasury 1-year constant maturity rate
and the dashed line the Treasury 3-year constant maturity rate (red).

xt, indicating that, as expected, the two interest rates are highly correlated. A naive way to

describe the relationship between the two interest rates is to use the simple model, Model I:

yt = β1 + β2 xt + et. This results in a fitted model yt = 0.911 + 0.924xt + et, with σ̂2
e = 0.538
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Figure 2.4: Scatterplots of U.S. weekly interest rates from January 5, 1962 to September 10,
1999: the left panel is 3-year rate versus 1-year rate, and the right panel is changes in 3-year
rate versus changes in 1-year rate.

and R2 = 95.8%, where the standard errors of the two coefficients are 0.032 and 0.004,

respectively. This simple model (Model I) confirms the high correlation between the two

interest rates. However, the model is seriously inadequate as shown by Figure 2.5, which

1970 1980 1990 2000
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−1.
0

−0.
5

0.0
0.5

1.0

0 5 10 15 20 25 30

−0.
5

0.0
0.5
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Figure 2.5: Residual series of linear regression Model I for two U.S. weekly interest rates:
the left panel is time plot and the right panel is ACF.

gives the time plot and ACF of its residuals. In particular, the sample ACF of the residuals is

highly significant and decays slowly, showing the pattern of a unit root nonstationary time

series1. The behavior of the residuals suggests that marked differences exist between the

two interest rates. Using the modern econometric terminology, if one assumes that the two

1We will discuss in detail on how to do unit root test later
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interest rate series are unit root nonstationary, then the behavior of the residuals indicates

that the two interest rates are not co-integrated; see later chapters for discussion of unit

root and co-integration. In other words, the data fail to support the hypothesis that

there exists a long-term equilibrium between the two interest rates. In some sense, this is

not surprising because the pattern of “inverted yield curve” did occur during the data span.

By the inverted yield curve, we mean the situation under which interest rates are inversely

related to their time to maturities.

The unit root behavior of both interest rates and the residuals leads to the consideration

of the change series of interest rates. Let ∆xt = yt − yt−1 = (1 − L)xt be changes in the

1-year interest rate and ∆ yt = yt − yt−1 = (1 − L) yt denote changes in the 3-year interest

rate. Consider the linear regression, Model II: ∆ yt = β1+β2 ∆xt +et. Figure 2.6 shows time

plots of the two change series, whereas the right panel of Figure 2.4 provides a scatterplot
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Figure 2.6: Time plots of the change series of U.S. weekly interest rates from January 12,
1962 to September 10, 1999: changes in the Treasury 1-year constant maturity rate are in
denoted by black solid line, and changes in the Treasury 3-year constant maturity rate are
indicated by red dashed line.

between them. The change series remain highly correlated with a fitted linear regression

model given by ∆ yt = 0.0002 + 0.7811 ∆xt + et with σ̂2
e = 0.0682 and R2 = 84.8%. The

standard errors of the two coefficients are 0.0015 and 0.0075, respectively. This model further

confirms the strong linear dependence between interest rates. The two top panels of Figure

2.7 show the time plot (left) and sample ACF (right) of the residuals (Model II). Once again,

the ACF shows some significant serial correlation in the residuals, but the magnitude of the

correlation is much smaller. This weak serial dependence in the residuals can be modeled by
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Figure 2.7: Residual series of the linear regression models: Model II (top) and Model III
(bottom) for two change series of U.S. weekly interest rates: time plot (left) and ACF (right).

using the simple time series models discussed in the previous sections, and we have a linear

regression with time series errors.

The main objective of this section is to discuss a simple approach for building a linear

regression model with time series errors. The approach is straightforward. We employ a

simple time series model discussed in this chapter for the residual series and estimate the

whole model jointly. For illustration, consider the simple linear regression in Model II.

Because residuals of the model are serially correlated, we identify a simple ARMA model for

the residuals. From the sample ACF of the residuals shown in the right top panel of Figure

2.7, we specify an MA(1) model for the residuals and modify the linear regression model to

(Model III): ∆ yt = β1 + β2 ∆xt + et and et = wt − θ1wt−1, where {wt} is assumed to be

a white noise series. In other words, we simply use an MA(1) model, without the constant

term, to capture the serial dependence in the error term of Model II. The two bottom panels

of Figure 2.7 show the time plot (left) and sample ACF (right) of the residuals (Model III).

The resulting model is a simple example of linear regression with time series errors. In

practice, more elaborated time series models can be added to a linear regression equation to

form a general regression model with time series errors.
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Estimating a regression model with time series errors was not easy before the advent

of modern computers. Special methods such as the Cochrane-Orcutt estimator have been

proposed to handle the serial dependence in the residuals. By now, the estimation is as easy

as that of other time series models. If the time series model used is stationary and invertible,

then one can estimate the model jointly via the maximum likelihood method or conditional

maximum likelihood method. For the U.S. weekly interest rate data, the fitted version of

Model II is ∆ yt = 0.0002 + 0.7824 ∆xt + et and et = wt + 0.2115wt−1 with σ̂2
w = 0.0668

and R2 = 85.4%. The standard errors of the parameters are 0.0018, 0.0077, and 0.0221,

respectively. The model no longer has a significant lag-1 residual ACF, even though some

minor residual serial correlations remain at lags 4 and 6. The incremental improvement of

adding additional MA parameters at lags 4 and 6 to the residual equation is small and the

result is not reported here.

Comparing the above three models, we make the following observations. First, the high

R2 and coefficient 0.924 of Modle I are misleading because the residuals of the model show

strong serial correlations. Second, for the change series, R2 and the coefficient of ∆xt of

Model II and Model III are close. In this particular instance, adding the MA(1) model to

the change series only provides a marginal improvement. This is not surprising because the

estimated MA coefficient is small numerically, even though it is statistically highly significant.

Third, the analysis demonstrates that it is important to check residual serial dependence in

linear regression analysis. Because the constant term of Model III is insignificant, the model

shows that the two weekly interest rate series are related as yt = yt−1 + 0.782 (xt − xt−1) +

wt + 0.212wt−1. The interest rates are concurrently and serially correlated.

Finally, we outline a general procedure for analyzing linear regression models with time

series errors: First, fit the linear regression model and check serial correlations of the residu-

als. Second, if the residual series is unit-root nonstationary, take the first difference of both

the dependent and explanatory variables. Go to step 1. If the residual series appears to

be stationary, identify an ARMA model for the residuals and modify the linear regression

model accordingly. Third, perform a joint estimation via the maximum likelihood method

and check the fitted model for further improvement.

To check the serial correlations of residuals, we recommend that the Ljung-Box statistics

be used instead of the Durbin-Watson (DW) statistic because the latter only considers the
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lag-1 serial correlation. There are cases in which residual serial dependence appears at higher

order lags. This is particularly so when the time series involved exhibits some seasonal

behavior.

Remark: For a residual series et with T observations, the Durbin-Watson statistic is

DW =
T∑

t=2

(et − et−1)
2/

T∑

t=1

e2t .

Straightforward calculation shows that DW ≈ 2(1− ρ̂e(1)), where ρe(1) is the lag-1 ACF of

{et}.

The function in R for the Ljung-Box test is

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"))

and the Durbin-Watson test for autocorrelation of disturbances is

dwtest(formula, order.by = NULL, alternative = c("greater","two.sided",

"less"),iterations = 15, exact = NULL, tol = 1e-10, data = list())

2.2 Nonparametric Models with Correlated Errors

See the paper by Xiao, Linton, Carrol and Mammen (2003).

2.3 Computer Codes

##################################################

# This is Example 3.1 for Johnson and Johnson data

##################################################

y=read.table(’c:/res-teach/xiamen12-06/data/ex3-1.dat’,header=F)

n=length(y[,1])

y_log=log(y[,1]) # log of data

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.1.eps",

horizontal=F,width=6,height=6)
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par(mfrow=c(1,2),mex=0.4,bg="light yellow")

ts.plot(y,type="l",lty=1,ylab="",xlab="")

title(main="J&J Earnings",cex=0.5)

ts.plot(y_log,type="l",lty=1,ylab="",xlab="")

title(main="transformed log(earnings)",cex=0.5)

dev.off()

# MODEL 1: y_t=beta_0+beta_1 t+ e_t

z1=1:n

fit1=lm(y_log~z1) # fit log(z) versus time trend

e1=fit1$resid

# Now, we need to re-fit the model using the transformed data

x1=5:n

y_1=y_log[5:n]

y_2=y_log[1:(n-4)]

y_fit=y_1-0.7614*y_2

x2=x1-0.7614*(x1-4)

x1=(1-0.7614)*rep(1,n-4)

fit2=lm(y_fit~-1+x1+x2)

e2=fit2$resid

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.2.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light pink")

acf(e1, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="ACF")

text(10,0.8,"detrended")

pacf(e1,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="PACF")

acf(e2, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="")

text(15,0.8,"ARIMA(1,0,0,)_4")

pacf(e2,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="")

dev.off()

#####################################################
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# This is Example 3.2 for weekly interest rate series

#####################################################

z<-read.table("c:/res-teach/xiamen12-06/data/ex3-2.txt",header=F)

# first column=one year Treasury constant maturity rate;

# second column=three year Treasury constant maturity rate;

# third column=date

x=z[,1]

y=z[,2]

n=length(x)

u=seq(1962+1/52,by=1/52,length=n)

x_diff=diff(x)

y_diff=diff(y)

# Fit a simple regression model and examine the residuals

fit1=lm(y~x) # Model 1

e1=fit1$resid

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.3.eps",

horizontal=F,width=6,height=6)

matplot(u,cbind(x,y),type="l",lty=c(1,2),col=c(1,2),ylab="",xlab="")

dev.off()

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.4.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(1,2),mex=0.4,bg="light grey")

plot(x,y,type="p",pch="o",ylab="",xlab="",cex=0.5)

plot(x_diff,y_diff,type="p",pch="o",ylab="",xlab="",cex=0.5)

dev.off()

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.5.eps",

horizontal=F,width=6,height=6)



CHAPTER 2. REGRESSION MODELS WITH CORRELATED ERRORS 21

par(mfrow=c(1,2),mex=0.4,bg="light green")

plot(u,e1,type="l",lty=1,ylab="",xlab="")

abline(0,0)

acf(e1,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="")

dev.off()

# Take different and fit a simple regression again

fit2=lm(y_diff~x_diff) # Model 2

e2=fit2$resid

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.6.eps",

horizontal=F,width=6,height=6)

matplot(u[-1],cbind(x_diff,y_diff),type="l",lty=c(1,2),col=c(1,2),

ylab="",xlab="")

abline(0,0)

dev.off()

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-3.7.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light pink")

ts.plot(e2,type="l",lty=1,ylab="",xlab="")

abline(0,0)

acf(e2, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="")

# fit a model to the differenced data with an MA(1) error

fit3=arima(y_diff,xreg=x_diff, order=c(0,0,1)) # Model 3

e3=fit3$resid

ts.plot(e3,type="l",lty=1,ylab="",xlab="")

abline(0,0)

acf(e3, ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="")

dev.off()
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Chapter 3

Seasonal Time Series Models

3.1 Characteristics of Seasonality

When time series (particularly, economic and financial time series) are observed each day

or month or quarter, it is often the case that such as a series displays a seasonal pattern

(deterministic cyclical behavior). Similar to the feature of trend, there is no precise definition

of seasonality. Usually we refer to seasonality when observations in certain seasons display

strikingly different features to other seasons. For example, when the retail sales are always

large in the fourth quarter (because of the Christmas spending) and small in the first quarter

as can be observed from Figure 3.1. It may also be possible that seasonality is reflected in the

variance of a time series. For example, for daily observed stock market returns the volatility

seems often highest on Mondays, basically because investors have to digest three days of

news instead of only day. For mode details, see the book by Taylor (2005, §4.5).

Example 5.1: For Example 3.1, the data shown in Figure 2.1 represent quarterly earnings

per share for the American Company Johnson & Johnson from the from the fourth quarter

of 1970 to the first quarter of 1980. It is easy to note some very nonstationary behavior in

this series that cannot be eliminated completely by differencing or detrending because of the

larger fluctuations that occur near the end of the record when the earnings are higher. The

right panel of Figure 2.1 shows the log-transformed series and we note that the latter peaks

have been attenuated so that the variance of the transformed series seems more stable. One

would have to eliminate the trend still remaining in the above series to obtain stationarity.

For more details on the current analyses of this series, see the later analyses and the papers

by Burman and Shumway (1998) and Cai and Chen (2006).

23
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Example 5.2: In this example we consider the monthly US retail sales series (not seasonally

adjusted) from January of 1967 to December of 2000 (in billions of US dollars). The data

can be downloaded from the web site at http://marketvector.com. The U.S. retail sales index
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Figure 3.1: US Retail Sales Data from 1967-2000.

is one of the most important indicators of the US economy. There are vast studies of the

seasonal series (like this series) in the literature; see, e.g., Franses (1996, 1998) and Ghysels

and Osborn (2001) and Cai and Chen (2006). From Figure 3.1, we can observe that the

peaks occur in December and we can say that retail sales display seasonality. Also, it can be

observed that the trend is basically increasing but nonlinearly. The same phenomenon can

be observed from Figure 2.1 for the quarterly earnings for Johnson & Johnson.

If simple graphs are not informative enough to highlight possible seasonal variation, a

formal regression model can be used, for example, one might try to consider the following

regression model with seasonal dummy variables

∆ yt = yt − yt−1 =
s∑

j=1

βj Dj,t + εt,

where Dj,t is a seasonal dummy variable and s is the number of seasons. Of course, one

can use a seasonal ARIMA model, denoted by ARIMA(p, d, q)× (P,D,Q)s, which will be

discussed later.

Example 5.3: In this example, we consider a time series with pronounced seasonality

displayed in Figure 3.2, where logs of four-weekly advertising expenditures on ratio and

television in The Netherlands for 1978.01−1994.13. For these two marketing time series one
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Figure 3.2: Four-weekly advertising expenditures on radio and television in The Netherlands,
1978.01 − 1994.13.

can observe clearly that the television advertising displays quite some seasonal fluctuation

throughout the entire sample and the radio advertising has seasonality only for the last five

years. Also, there seems to be a structural break in the radio series around observation

53. This break is related to an increase in radio broadcasting minutes in January 1982.

Furthermore, there is a visual evidence that the trend changes over time.

Generally, it appears that many time series seasonally observed from business and eco-

nomics as well as other applied fields display seasonality in the sense that the observations in

certain seasons have properties that differ from those data points in other seasons. A second

feature of many seasonal time series is that the seasonality changes over time, like what

studied by Cai and Chen (2006). Sometimes, these changes appear abrupt, as is the case for

advertising on the radio in Figure 3.2, and sometimes such changes occur only slowly. To

capture these phenomena, Cai and Chen (2006) proposed a more general flexible seasonal

effect model having the following form:

yij = α(ti) + βj(ti) + eij, i = 1, . . . , n, j = 1, . . . , s,

where yij = y(i−1)s+j, ti = i/n, α(·) is a (smooth) common trend function in [0, 1], {βj(·)}
are (smooth) seasonal effect functions in [0, 1], either fixed or random, subject to a set of

constraints, and the error term eij is assumed to be stationary. For more details, see Cai

and Chen (2006).
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3.2 Modeling

Some economic and financial as well as environmental time series such as quarterly earning

per share of a company exhibits certain cyclical or periodic behavior; see the later chapters

on more discussions on cycles and periodicity. Such a time series is called a seasonal

(deterministic cycle) time series. Figure 2.1 shows the time plot of quarterly earning per share

of Johnson and Johnson from the first quarter of 1960 to the last quarter of 1980. The data

possess some special characteristics. In particular, the earning grew exponentially during

the sample period and had a strong seasonality. Furthermore, the variability of earning

increased over time. The cyclical pattern repeats itself every year so that the periodicity of

the series is 4. If monthly data are considered (e.g., monthly sales of Wal-Mart Stores), then

the periodicity is 12. Seasonal time series models are also useful in pricing weather-related

derivatives and energy futures.

Analysis of seasonal time series has a long history. In some applications, seasonality is of

secondary importance and is removed from the data, resulting in a seasonally adjusted time

series that is then used to make inference. The procedure to remove seasonality from a time

series is referred to as seasonal adjustment. Most economic data published by the U.S.

government are seasonally adjusted (e.g., the growth rate of domestic gross product and the

unemployment rate). In other applications such as forecasting, seasonality is as important

as other characteristics of the data and must be handled accordingly. Because forecasting

is a major objective of economic and financial time series analysis, we focus on the latter

approach and discuss some econometric models that are useful in modeling seasonal time

series.

When the autoregressive, differencing, or seasonal moving average behavior seems to

occur at multiples of some underlying period s, a seasonal ARIMA series may result. The

seasonal nonstationarity is characterized by slow decay at multiples of s and can often be

eliminated by a seasonal differencing operator of the form ∆D
s xt = (1 − Ls)D xt. For

example, when we have monthly data, it is reasonable that a yearly phenomenon will induce

s = 12 and the ACF will be characterized by slowly decaying spikes at 12, 24, 36, 48, · · ·, and

we can obtain a stationary series by transforming with the operator (1−L12)xt = xt −xt−12

which is the difference between the current month and the value one year or 12 months ago.

If the autoregressive or moving average behavior is seasonal at period s, we define formally
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the operators

Φ(Ls) = 1 − Φ1 L
s − Φ2 L

2s − · · · − ΦP L
Ps (3.1)

and

Θ(Ls) = 1 − Θ1 L
s − Θ2 L

2s − · · · − ΘQ L
Qs. (3.2)

The final form of the seasonal ARIMA(p, d, q) × (P,D,Q)s model is

Φ(Ls)φ(L)∆D
s ∆d xt = Θ(Ls) θ(L)wt. (3.3)

Note that one special model of (3.3) is ARIMA(0, 1, 1) × (0, 1, 1)s, that is

(1 − Ls)(1 − L)xt = (1 − θ1 L)(1 − Θ1 L
s)wt.

This model is referred to as the airline model or multiplicative seasonal model in the

literature; see Box and Jenkins (1970), Box, Jenkins, and Reinsel (1994, Chapter 9), and

Brockwell and Davis (1991). It has been found to be widely applicable in modeling seasonal

time series. The AR part of the model simply consists of the regular and seasonal differences,

whereas the MA part involves two parameters.

We may also note the properties below corresponding to Properties 5.1 - 5.3.

Property 5.1: The ACF of a seasonally non-stationary time series decays very slowly at

lag multiples s, 2s, 3s, · · ·, with zeros in between, where s denotes a seasonal period, usually

4 for quarterly data or 12 for monthly data. The PACF of a non-stationary time series tends

to have a peak very near unity at lag s.

Property 5.2: For a seasonal autoregressive series of order P , the partial autocorrelation

function Φhh as a function of lag h has nonzero values at s, 2s, 3s, · · ·, Ps, with zeros in

between, and is zero for h > Ps, the order of the seasonal autoregressive process. There

should be some exponential decay.

Property 5.3: For a seasonal moving average series of orderQ, note that the autocorrelation

function (ACF) has nonzero values at s, 2s, 3s, · · ·, Qs and is zero for h > Qs.

Remark: Note that there is a build-in command in R called arima() which is a powerful

tool for estimating and making inference for an ARIMA model. The command is
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arima(x,order=c(0,0,0),seasonal=list(order=c(0,0,0),period=NA),

xreg=NULL,include.mean=TRUE, transform.pars=TRUE,fixed=NULL,init=NULL,

method=c("CSS-ML","ML","CSS"),n.cond,optim.control=list(),kappa=1e6)

See the manuals of R for details about this commend.

Example 5.4: We illustrate by fitting the monthly birth series from 1948-1979 shown in

Figure 3.3. The period encompasses the boom that followed the Second World War and there
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Figure 3.3: Number of live births 1948(1) − 1979(1) and residuals from models with a first
difference, a first difference and a seasonal difference of order 12 and a fitted ARIMA(0, 1, 1)×
(0, 1, 1)12 model.

is the expected rise which persists for about 13 years followed by a decline to around 1974.

The series appears to have long-term swings, with seasonal effects superimposed. The long-

term swings indicate possible non-stationarity and we verify that this is the case by checking

the ACF and PACF shown in the top panel of Figure 3.4. Note that by Property 5.1,

slow decay of the ACF indicates non-stationarity and we respond by taking a first difference.

The results shown in the second panel of Figure 2.5 indicate that the first difference has

eliminated the strong low frequency swing. The ACF, shown in the second panel from the

top in Figure 3.4 shows peaks at 12, 24, 36, 48, · · ·, with now decay. This behavior implies
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Figure 3.4: Autocorrelation functions and partial autocorrelation functions for the birth
series (top two panels), the first difference (second two panels) an ARIMA(0, 1, 0)×(0, 1, 1)12

model (third two panels) and an ARIMA(0, 1, 1) × (0, 1, 1)12 model (last two panels).
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seasonal non-stationarity, by Property 5.1 above, with s = 12. A seasonal difference of

the first difference generates an ACF and PACF in Figure 3.4 that we expect for stationary

series.

Taking the seasonal difference of the first difference gives a series that looks stationary

and has an ACF with peaks at 1 and 12 and a PACF with a substantial peak at 12 and

lesser peaks at 12, 24, · · ·. This suggests trying either a first order moving average term,

or a first order seasonal moving average term with s = 12, by Property 5.3 above. We

choose to eliminate the largest peak first by applying a first-order seasonal moving average

model with s = 12. The ACF and PACF of the residual series from this model, i.e. from

ARIMA(0, 1, 0)× (0, 1, 1)12, written as (1−L)(1−L12)xt = (1−Θ1 L
12)wt, is shown in the

fourth panel from the top in Figure 3.4. We note that the peak at lag one is still there, with

attending exponential decay in the PACF. This can be eliminated by fitting a first-order

moving average term and we consider the model ARIMA(0, 1, 1) × (0, 1, 1)12, written as

(1 − L)(1 − L12)xt = (1 − θ1 L)(1 − Θ1 L
12)wt.

The ACF of the residuals from this model are relatively well behaved with a number of peaks

either near or exceeding the 95% test of no correlation. Fitting this final ARIMA(0, 1, 1) ×
(0, 1, 1)12 model leads to the model

(1 − L)(1 − L12)xt = (1 − 0.4896L)(1 − 0.6844L12)wt

with AICC= 4.95, R2 = 0.98042 = 0.961, and the p-values are (0.000, 0.000). The ARIMA

search leads to the model

(1 − L)(1 − L12)xt = (1 − 0.4088L− 0.1645L2)(1 − 0.6990L12)wt,

yielding AICC= 4.92 and R2 = 0.9812 = 0.962, slightly better than the ARIMA(0, 1, 1) ×
(0, 1, 1)12 model. Evaluating these latter models leads to the conclusion that the extra

parameters do not add a practically substantial amount to the predictability. The model is

expanded as

xt = xt−1 + xt−12 − xt−13 + wt − θ1wt−1 − Θ1wt−12 + θ1Θ1wt−13.

The forecast is

xt
t+1 = xt + xt−11 − xt−12 − θ1wt − Θ1wt−11 + θ1 Θ1wt−12
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xt
t+2 = xt

t+1 + xt−10 − xt−11 − Θ1wt−10 + θ1Θ1wt−11.

Continuing in the same manner, we obtain

xt
t+12 = xt

t+11 + xt − xt−1 − Θ1wt + θ1Θ1wt−1

for the 12 month forecast.

Example 5.5: Figure 3.5 shows the autocorrelation function of the log-transformed J&J

earnings series that is plotted in Figure 2.1 and we note the slow decay indicating the

nonstationarity which has already been obvious in the Chapter 3 discussion. We may also

compare the ACF with that of a random walk, and note the close similarity. The partial

autocorrelation function is very high at lag one which, under ordinary circumstances, would

indicate a first order autoregressive AR(1) model, except that, in this case, the value is

close to unity, indicating a root close to 1 on the unit circle. The only question would be

whether differencing or detrending is the better transformation to stationarity. Following

in the Box-Jenkins tradition, differencing leads to the ACF and PACF shown in the second

panel and no simple structure is apparent. To force a next step, we interpret the peaks at 4,

8, 12, 16, · · ·, as contributing to a possible seasonal autoregressive term, leading to a possible

ARIMA(0, 1, 0) × (1, 0, 0)4 and we simply fit this model and look at the ACF and PACF of

the residuals, shown in the third two panels. The fit improves somewhat, with significant

peaks still remaining at lag 1 in both the ACF and PACF. The peak in the ACF seems more

isolated and there remains some exponentially decaying behavior in the PACF, so we try a

model with a first-order moving average. The bottom two panels show the ACF and PACF

of the resulting ARIMA(0, 1, 1)×(1, 0, 0)4 and we note only relatively minor excursions above

and below the 95% intervals under the assumption that the theoretical ACF is white noise.

The final model suggested is (yt = log xt)

(1 − Φ1 L
4)(1 − L) yt = (1 − θ1 L)wt, (3.4)

where Φ̂1 = 0.820(0.058), θ̂1 = 0.508(0.098), and σ̂2
w = 0.0086. The model can be written in

forecast form as

yt = yt−1 + Φ1(yt−4 − yt−5) + wt − θ1wt−1.

The residual plot of the above is plotted in the left bottom panel of Figure 3.6. To forecast

the original series for, say 4 quarters, we compute the forecast limits for yt = log xt and then

exponentiate, i.e. xt
t+h = exp(yt

t+h).
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Figure 3.5: Autocorrelation functions (ACF) and partial autocorrelation functions (PACF)
for the log J&J earnings series (top two panels), the first difference (second two panels),
ARIMA(0, 1, 0) × (1, 0, 0)4 model (third two panels), and ARIMA(0, 1, 1) × (1, 0, 0)4 model
(last two panels).

Based on the the exact likelihood method, Tsay (2005) considered the following seasonal

ARIMA(0, 1, 1) × (0, 1, 1)4 model

(1 − L)(1 − L4) yt = (1 − 0.678L)(1 − 0.314L4)wt, (3.5)

with σ̂2
w = 0.089, where standard errors of the two MA parameters are 0.080 and 0.101,

respectively. The Ljung-Box statistics of the residuals show Q(12) = 10.0 with p-value 0.44.

The model appears to be adequate. The ACF and PACF of the ARIMA(0, 1, 1) × (0, 1, 1)4
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Figure 3.6: ACF and PACF for ARIMA(0, 1, 1) × (0, 1, 1)4 model (top two panels) and the
residual plots of ARIMA(0, 1, 1)×(1, 0, 0)4 (left bottom panel) and ARIMA(0, 1, 1)×(0, 1, 1)4

model (right bottom panel).

model are given in the top two panels of Figure 3.6 and the residual plot is displayed in

the right bottom panel of Figure 3.6. Based on the comparison of ACF and PACF of two

model (3.4) and (3.5) [the last two panels of Figure 3.5 and the top two panels in Figure

3.6], it seems that ARIMA(0, 1, 1) × (0, 1, 1)4 model in (3.5) might perform better than

ARIMA(0, 1, 1) × (1, 0, 0)4 model in (3.4).

To illustrate the forecasting performance of the seasonal model in (3.5), we re-estimate

the model using the first 76 observations and reserve the last eight data points for fore-

casting evaluation. We compute 1-step to 8-step ahead forecasts and their standard errors

of the fitted model at the forecast origin t = 76. An anti-log transformation is taken to

obtain forecasts of earning per share using the relationship between normal and log-normal

distributions. Figure 2.15 in Tsay (2005, p.77) shows the forecast performance of the model,

where the observed data are in solid line, point forecasts are shown by dots, and the dashed

lines show 95% interval forecasts. The forecasts show a strong seasonal pattern and are close

to the observed data. For more comparisons for forecasts using different models including

semiparametric and nonparametric models, the reader is referred to the book by Shumway

(1988), and Shumway and Stoffer (2000) and the papers by Burman and Shummay (1998)
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and Cai and Chen (2006).

When the seasonal pattern of a time series is stable over time (e.g., close to a deterministic

function), dummy variables may be used to handle the seasonality. This approach is taken

by some analysts. However, deterministic seasonality is a special case of the multiplicative

seasonal model discussed before. Specifically, if Θ1 = 1, then model contains a deterministic

seasonal component. Consequently, the same forecasts are obtained by using either dummy

variables or a multiplicative seasonal model when the seasonal pattern is deterministic. Yet

use of dummy variables can lead to inferior forecasts if the seasonal pattern is not deter-

ministic. In practice, we recommend that the exact likelihood method should be used to

estimate a multiplicative seasonal model, especially when the sample size is small or when

there is the possibility of having a deterministic seasonal component.

Example 5.6: To determine deterministic behavior, consider the monthly simple return of

the CRSP Decile 1 index from January 1960 to December 2003 for 528 observations. The

series is shown in the left top panel of Figure 3.7 and the time series does not show any

clear pattern of seasonality. However, the sample ACf of the return series shown in the left
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Figure 3.7: Monthly simple return of CRSP Decile 1 index from January 1960 to December
2003: Time series plot of the simple return (left top panel), time series plot of the simple
return after adjusting for January effect (right top panel), the ACF of the simple return (left
bottom panel), and the ACF of the adjusted simple return.
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bottom panel of Figure 3.7 contains significant lags at 12, 24, and 36 as well as lag 1. If

seasonal AIMA models are entertained, a model in form

(1 − φ1 L)(1 − Φ1 L
12)xt = α+ (1 − Θ1 L

12)wt

is identified, where xt is the monthly simple return. Using the conditional likelihood, the

fitted model is

(1 − 0.25L)(1 − 0.99L12)xt = 0.0004 + (1 − 0.92L12)wt

with σw = 0.071. The MA coefficient is close to unity, indicating that the fitted model is

close to being non-invertible. If the exact likelihood method is used, we have

(1 − 0.264L)(1 − 0.996L12)xt = 0.0002 + (1 − 0.999L12)wt

with σw = 0.067. Cancellation between seasonal AR and MA factors is clearly. This high-

lights the usefulness of using the exact likelihood method, and the estimation result suggests

that the seasonal behavior might be deterministic. To further confirm this assertion, we

define the dummy variable for January, that is

Jt =

{
1 if t is January,
0 otherwise,

and employ the simple linear regression

xt = β0 + β1 Jt + et.

The right panels of Figure 3.7 show the time series plot of and the ACF of the residual series

of the prior simple linear regression. From the ACF, there are no significant serial correlation

at any multiples of 12, suggesting that the seasonal pattern has been successfully removed

by the January dummy variable. Consequently, the seasonal behavior in the monthly simple

return of Decile 1 is due to the January effect.

3.3 Nonlinear Seasonal Time Series Models

See the papers by Burman and Shumway (1998) and Cai and Chen (2006) and the books

by Franses (1998) and Ghysels and Osborn (2001). The reading materials are the papers by

Burman and Shumway (1998) and Cai and Chen (2006).
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3.4 Computer Codes

##########################################

# This is Example 5.2 for retail sales data

#########################################

y=read.table("c:/res-teach/xiamen12-06/data/ex5-2.txt",header=F)

postscript(file="c:/res-teach/xiamen12-06/figs/fig-5.1.eps",

horizontal=F,width=6,height=6)

ts.plot(y,type="l",lty=1,ylab="",xlab="")

dev.off()

############################################

# This is Example 5.3 for the marketing data

############################################

text_tv=c("television")

text_radio=c("radio")

data<-read.table("c:/res-teach/xiamen12-06/data/ex5-3.txt",header=T)

TV=log(data[,1])

RADIO=log(data[,2])

postscript(file="c:/res-teach/xiamen12-06/figs/fig-5.2.eps",

horizontal=F,width=6,height=6)

ts.plot(cbind(TV,RADIO),type="l",lty=c(1,2),col=c(1,2),ylab="",xlab="")

text(20,10.5,text_tv)

text(165,8,text_radio)

dev.off()

####################################################################

# This is Example 5.4 in Chapter 2

####################################

x<-matrix(scan("c:/res-teach/xiamen12-06/data/ex5-4.txt"),byrow=T,ncol=1)

n=length(x)

x_diff=diff(x)

x_diff_12=diff(x_diff,lag=12)
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fit1=arima(x,order=c(0,0,0),seasonal=list(order=c(0,0,0)),include.mean=F)

resid_1=fit1$resid

fit2=arima(x,order=c(0,1,0),seasonal=list(order=c(0,0,0)),include.mean=F)

resid_2=fit2$resid

fit3=arima(x,order=c(0,1,0),seasonal=list(order=c(0,1,0),period=12),

include.mean=F)

resid_3=fit3$resid

postscript(file="c:/res-teach/xiamen12-06/figs/fig-5.4.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(5,2),mex=0.4,bg="light pink")

acf(resid_1, ylab="", xlab="",ylim=c(-0.5,1),lag=60,main="ACF",cex=0.7)

pacf(resid_1,ylab="",xlab="",ylim=c(-0.5,1),lag=60,main="PACF",cex=0.7)

text(20,0.7,"data",cex=1.2)

acf(resid_2, ylab="", xlab="",ylim=c(-0.5,1),lag=60,main="")

# differenced data

pacf(resid_2,ylab="",xlab="",ylim=c(-0.5,1),lag=60,main="")

text(30,0.7,"ARIMA(0,1,0)")

acf(resid_3, ylab="", xlab="",ylim=c(-0.5,1),lag=60,main="")

# seasonal difference of differenced data

pacf(resid_3,ylab="",xlab="",ylim=c(-0.5,1),lag=60,main="")

text(30,0.7,"ARIMA(0,1,0)X(0,1,0)_{12}",cex=0.8)

fit4=arima(x,order=c(0,1,0),seasonal=list(order=c(0,1,1),

period=12),include.mean=F)

resid_4=fit4$resid

fit5=arima(x,order=c(0,1,1),seasonal=list(order=c(0,1,1),

period=12),include.mean=F)

resid_5=fit5$resid

acf(resid_4, ylab="", xlab="",ylim=c(-0.5,1),lag=60,main="")
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# ARIMA(0,1,0)*(0,1,1)_12

pacf(resid_4,ylab="",xlab="",ylim=c(-0.5,1),lag=60,main="")

text(30,0.7,"ARIMA(0,1,0)X(0,1,1)_{12}",cex=0.8)

acf(resid_5, ylab="", xlab="",ylim=c(-0.5,1),lag=60,main="")

# ARIMA(0,1,1)*(0,1,1)_12

pacf(resid_5,ylab="",xlab="",ylim=c(-0.5,1),lag=60,main="")

text(30,0.7,"ARIMA(0,1,1)X(0,1,1)_{12}",cex=0.8)

dev.off()

postscript(file="c:/res-teach/xiamen12-06/figs/fig-5.3.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light blue")

ts.plot(x,type="l",lty=1,ylab="",xlab="")

text(250,375, "Births")

ts.plot(x_diff,type="l",lty=1,ylab="",xlab="",ylim=c(-50,50))

text(255,45, "First difference")

abline(0,0)

ts.plot(x_diff_12,type="l",lty=1,ylab="",xlab="",ylim=c(-50,50))

# time series plot of the seasonal difference (s=12) of differenced data

text(225,40,"ARIMA(0,1,0)X(0,1,0)_{12}")

abline(0,0)

ts.plot(resid_5,type="l",lty=1,ylab="",xlab="",ylim=c(-50,50))

text(225,40, "ARIMA(0,1,1)X(0,1,1)_{12}")

abline(0,0)

dev.off()

########################

# This is Example 5.5

########################

y=read.table(’c:/res-teach/xiamen12-06/data/ex3-1.txt’,header=F)

n=length(y[,1])
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y_log=log(y[,1]) # log of data

y_diff=diff(y_log) # first-order difference

y_diff_4=diff(y_diff,lag=4) # first-order seasonal difference

fit1=ar(y_log,order=1) # fit AR(1) model

#print(fit1)

library(tseries) # call library(tseries)

library(zoo)

fit1_test=adf.test(y_log)

# do Augmented Dicky-Fuller test for tesing unit root

#print(fit1_test)

fit1=arima(y_log,order=c(0,0,0),seasonal=list(order=c(0,0,0)),

include.mean=F)

resid_21=fit1$resid

fit2=arima(y_log,order=c(0,1,0),seasonal=list(order=c(0,0,0)),

include.mean=F)

resid_22=fit2$resid # residual for ARIMA(0,1,0)*(0,0,0)

fit3=arima(y_log,order=c(0,1,0),seasonal=list(order=c(1,0,0),period=4),

include.mean=F,method=c("CSS"))

resid_23=fit3$resid # residual for ARIMA(0,1,0)*(1,0,0)_4

# note that this model is non-stationary so that "CSS" is used

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-5.5.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(4,2),mex=0.4,bg="light green")

acf(resid_21, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="ACF",cex=0.7)

text(16,0.8,"log(J&J)")

pacf(resid_21,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="PACF",cex=0.7)

acf(resid_22, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="")

text(16,0.8,"First Difference")

pacf(resid_22,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="")
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acf(resid_23, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="")

text(16,0.8,"ARIMA(0,1,0)X(1,0,0,)_4",cex=0.8)

pacf(resid_23,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="")

fit4=arima(y_log,order=c(0,1,1),seasonal=list(order=c(1,0,0),

period=4),include.mean=F,method=c("CSS"))

resid_24=fit4$resid # residual for ARIMA(0,1,1)*(1,0,0)_4

# note that this model is non-stationary

#print(fit4)

fit4_test=Box.test(resid_24,lag=12, type=c("Ljung-Box"))

#print(fit4_test)

acf(resid_24, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="")

text(16,0.8,"ARIMA(0,1,1)X(1,0,0,)_4",cex=0.8)

# ARIMA(0,1,1)*(1,0,0)_4

pacf(resid_24,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="")

dev.off()

fit5=arima(y_log,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4),

include.mean=F,method=c("ML"))

resid_25=fit5$resid # residual for ARIMA(0,1,1)*(0,1,1)_4

#print(fit5)

fit5_test=Box.test(resid_25,lag=12, type=c("Ljung-Box"))

#print(fit5_test)

postscript(file="c:\\res-teach\\xiamen12-06\\figs\\fig-5.6.eps",

horizontal=F,width=6,height=6,bg="light grey")

par(mfrow=c(2,2),mex=0.4)

acf(resid_25, ylab="", xlab="",ylim=c(-0.5,1),lag=30,main="ACF")

text(16,0.8,"ARIMA(0,1,1)X(0,1,1,)_4",cex=0.8)

# ARIMA(0,1,1)*(0,1,1)_4

pacf(resid_25,ylab="",xlab="",ylim=c(-0.5,1),lag=30,main="PACF")

ts.plot(resid_24,type="l",lty=1,ylab="",xlab="")

title(main="Residual Plot",cex=0.5)
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text(40,0.2,"ARIMA(0,1,1)X(1,0,0,)_4",cex=0.8)

abline(0,0)

ts.plot(resid_25,type="l",lty=1,ylab="",xlab="")

title(main="Residual Plot",cex=0.5)

text(40,0.18,"ARIMA(0,1,1)X(0,1,1,)_4",cex=0.8)

abline(0,0)

dev.off()

#########################

# This is Example 5.6

########################

z<-matrix(scan("c:/res-teach/xiamen12-06/data/ex5-6.txt"),byrow=T,ncol=4)

decile1=z[,2]

# Model 1: an ARIMA(1,0,0)*(1,0,1)_12

fit1=arima(decile1,order=c(1,0,0),seasonal=list(order=c(1,0,1),

period=12),include.mean=T)

#print(fit1)

e1=fit1$resid

n=length(decile1)

m=n/12

jan=rep(c(1,0,0,0,0,0,0,0,0,0,0,0),m)

feb=rep(c(0,1,0,0,0,0,0,0,0,0,0,0),m)

mar=rep(c(0,0,1,0,0,0,0,0,0,0,0,0),m)

apr=rep(c(0,0,0,1,0,0,0,0,0,0,0,0),m)

may=rep(c(0,0,0,0,1,0,0,0,0,0,0,0),m)

jun=rep(c(0,0,0,0,0,1,0,0,0,0,0,0),m)

jul=rep(c(0,0,0,0,0,0,1,0,0,0,0,0),m)

aug=rep(c(0,0,0,0,0,0,0,1,0,0,0,0),m)

sep=rep(c(0,0,0,0,0,0,0,0,1,0,0,0),m)

oct=rep(c(0,0,0,0,0,0,0,0,0,1,0,0),m)
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nov=rep(c(0,0,0,0,0,0,0,0,0,0,1,0),m)

dec=rep(c(0,0,0,0,0,0,0,0,0,0,0,1),m)

de=cbind(decile1[jan==1],decile1[feb==1],decile1[mar==1],decile1[apr==1],

decile1[may==1],decile1[jun==1],decile1[jul==1],decile1[aug==1],

decile1[sep==1],decile1[oct==1],decile1[nov==1],decile1[dec==1])

# Model 2: a simple regression model without correlated errors

# to see the effect from January

fit2=lm(decile1~jan)

e2=fit2$resid

#print(summary(fit2))

# Model 3: a regression model with correlated errors

fit3=arima(decile1,xreg=jan,order=c(0,0,1),include.mean=T)

e3=fit3$resid

#print(fit3)

postscript(file="c:/res-teach/xiamen12-06/figs/fig-5.7.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light yellow")

ts.plot(decile1,type="l",lty=1,col=1,ylab="",xlab="")

title(main="Simple Returns",cex=0.5)

abline(0,0)

ts.plot(e3,type="l",lty=1,col=1,ylab="",xlab="")

title(main="January-adjusted returns",cex=0.5)

abline(0,0)

acf(decile1, ylab="", xlab="",ylim=c(-0.5,1),lag=40,main="ACF")

acf(e3,ylab="",xlab="",ylim=c(-0.5,1),lag=40,main="ACF")

dev.off()
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Chapter 4

Long Memory Models and Structural
Changes

Long memory time series have been a popular area of research in economics, finance and

statistics and other applied fields such as hydrological sciences during the recent years. Long

memory dependence was first observed by the hydrologist Hurst (1951) when analyzing the

minimal water flow of the Nile River when planning the Aswan Dam. Granger (1966) gave

an intensive discussion about the application of long memory dependence in economics and

its consequence was initiated. But in many applications, it is not clear whether the observed

dependence structure is real long memory or an artefact of some other phenomenon such

as structural breaks or deterministic trends. Long memory in the data would have strong

consequences.

4.1 Long Memory Models

4.1.1 Methodology

We have discussed that for a stationary time series the ACF decays exponentially to zero as

lag increases. Yet for a unit root nonstationary time series, it can be shown that the sample

ACF converges to 1 for all fixed lags as the sample size increases; see Chan and Wei (1988)

and Tiao and Tsay (1983). There exist some time series whose ACF decays slowly to zero at

a polynomial rate as the lag increases. These processes are referred to as long memory or

long range dependent time series. One such an example is the fractionally differenced

process defined by

(1 − L)d xt = wt, |d| < 0.5, (4.1)

44
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where {wt} is a white noise series and d is called the long memory parameter or H = d+1/2

is called the Hurst parameter; see Hurst (1951). Properties of model (4.1) have been widely

studied in the literature (e.g., Beran, 1994). We summarize some of these properties below.

1. If d < 0.5, then xt is a weakly stationary process and has the infinite MA representation

xt = wt +
∞∑

k=1

ψk wt−k with ψk = d(d+ 1) · · · (d+ k − 1)/k! =

(
k + d− 1

k

)
.

2. If d > −0.5, then xt is invertible and has the infinite AR representation.

xt = wt +
∞∑

k=1

ψk wt−k with ψk = (0 − d)(1 − d) · · · (k − 1 − d)/k! =

(
k − d− 1

k

)
.

3. For |d| < 0.5, the ACF of xt is

ρx(h) =
d(1 + d) · · · (h− 1 + d)

(1 − d)(2 − d) · · · (h− d)
, h ≥ 1.

In particular, ρx(1) = d/(1 − d) and as h→ ∞,

ρx(h) ≈
(−d)!

(d− 1)!
h2d−1.

4. For |d| < 0.5, the PACF of xt is φh,h = d/(h− d) for h ≥ 1.

5. For |d| < 0.5, the spectral density function fx(·) of xt, which is the Fourier transform

of the ACF γx(h) of xt, that is

fx(ν) =
1

2π

∞∑

h=−∞

γx(h) exp(−i h π ν)

for ν ∈ [−1, 1], where i =
√
−1, satisfies

fx(ν) ∼ ν−2d as ν → 0, (4.2)

where ν ∈ [0, 1] denotes the frequency.

See the books by Hamilton (1994) and Brockwell and Davis (1991) for details about the

spectral analysis. The basic idea and properties of the spectral density and its estimation

are discussed in the section.

Of particular interest here is the behavior of ACF of xt when d < 0.5. The property

says that ρx(h) ∼ h2d−1, which decays at a polynomial, instead of exponential rate. For
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this reason, such an xt process is called a long-memory time series. A special characteristic

of the spectral density function in (4.2) is that the spectrum diverges to infinity as ν → 0.

However, the spectral density function of a stationary ARMA process is bounded for all

ν ∈ [−1, 1].

Earlier we used the binomial theorem for non-integer powers

(1 − L)d =
∞∑

k=0

(−1)k

(
d

k

)
Lk.

If the fractionally differenced series (1 − L)d xt follows an ARMA(p, q) model, then xt is

called an fractionally differenced autoregressive moving average (ARFIMA(p, d, q)) process,

which is a generalized ARIMA model by allowing for non-integer d. In practice, if the sample

ACF of a time series is not large in magnitude, but decays slowly, then the series may have

long memory. For more discussions, we refer to the book by Beran (1994). For the pure

fractionally differenced model in (4.1), one can estimate d using either a maximum likelihood

method in the time domain (by assuming that the distribution is known) or the approxi-

mate Whittle likelihood (see below) or a regression method with logged periodogram at the

lower frequencies (using (4.2)) in the frequency domain. Finally, long-memory models have

attracted some attention in the finance literature in part because of the work on fractional

Brownian motion in the continuous time models.

4.1.2 Spectral Density

We define the basic statistics used for detecting periodicities in time series and for deter-

mining whether different time series are related at certain frequencies. The power spectrum

is a measure of the power or variance of a time series at a particular frequency ν; the func-

tion that displays the power or variance for each frequency ν, say fx(ν) is called the power

spectral density. Although the function fx(·) is the Fourier transform of the autocovariance

function γx(h), we shall not make much use of this theoretical result in our generally applied

discussion. For the theoretical results, please read the book by Brockwell and Davis (1991,

§10.3).

The discrete Fourier transform of a sampled time series {xt}n−1
t=0 is defined as

X(νk) =
1√
n

n−1∑

t=0

xt exp{−2π νk t}, (4.3)
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where νk = k/n, k = 0, . . . , n − 1, defines the set of frequencies over which (4.3) is com-

puted. This means that the frequencies over which (4.3) is evaluated are of the form

ν = 0, 1/n, 2/n, . . . , (n − 1)/n. The evaluation of (4.3) proceeds using the fast Fourier

transform (DFT) and usually assumes that the length of the series, n is some power of 2.

If the series is not a power of 2, it can be padded by adding zeros so that the extended

series corresponds to the next highest power of two. One might want to do this anyway if

frequencies of the form νk = k/n are not close enough to the frequencies of interest.

Since, the values of (4.3) have a real and imaginary part at every frequency and can be

positive or negative, it is conventional to calculate first the squared magnitude of (4.3) which

is called the periodogram. The periodogram is defined as

Px(νk) = |X(νk)|2 (4.4)

and is just the sum of the squares of the sine and cosine transforms of the series. If we

consider the power spectrum fx(νk) as the quantity to estimate, it is approximately true1;

see the books by Hamilton (1994) and Brockwell and Davis (1991, §10.3), that

E[P (νk)] = E
[
|X(νk)|2

]
≈ fx(νk), (4.5)

which implies that the periodogram is an approximately unbiased estimator of the power

spectrum at frequency νk. One may also show that the approximate covariance between two

frequencies νk and νl is zero for k 6= l and both frequencies multiples of 1/n. One can also

show that the sine and cosine parts of (4.3) are uncorrelated and approximately normally

distributed with equal variances fx(νk)/2. This implies that the squared standardized real

and imaginary components have chi-squared distributions with 1 degree of freedom each.

The periodogram is the sum of two such squared variables and must then have a chi-squared

distribution with 2 degrees of freedom. In other words, the approximate distribution of

P (νk) is exponential with the parameter λk = f(νk). The Whittle likelihood is based on the

approximate exponential distribution of {P (νk)}n−1
k=0 .

It should be noted that trends introduce apparent long range periodicities which inflate

the spectrum at low frequencies (small values of νk) since the periodogram assumes that

the trend is part of one very long frequency. This behavior will obscure possible important

1For Ph.D. students, I encourage you to read the related book to understand the details on this aspect,

which is important for your future research.
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components at higher frequencies. For this reason (as with the auto and cross correlations) it

is important to work in (4.3) with the transform of the mean-adjusted (xt − x) or detrended

(xt − â − b̂ t) series. A further modification that sometimes improves the approximation in

the expectation in (4.5) is tapering, a procedure where by each point xt is replaced by at xt,

where at is a function, often a cosine bell, that is maximum at the midpoint of the series and

decays away at the extremes. Tapering makes a difference in engineering applications where

there are large variations in the value of the spectral density fx(·). As a final comment,

we note that the fast Fourier transform algorithms for computing (4.3) generally work best

when the sample length is some power of two. For this reason, it is conventional to extend

the data series xt, t = 0, 1, . . . , n− 1 to a length n∗ > n that is a power of two by replacing

the missing values by xt = 0, t = n+ 1, . . . , n∗ − 1. If this is done, the frequency ordinates

νk = k/n are replaced by ν∗k = k/n∗ and we proceed as before.

Theorem 10.3.2 in Brockwell and Davis (1991, p.347) shows that P (νk) is not a con-

sistent estimator of fx(ν). Since for large n, the periodogram ordinates are approximately

uncorrelated with variances changing only slightly over small frequency intervals, we might

hope to construct a consistent estimator of fx(ν) by averaging the periodogram ordinates

in a small neighborhood of ν, which is called the smoothing estimator. On the other hand,

such a smoothing estimator can reduce the variability of the periodogram estimator of the

previous section. This procedure leads to a spectral estimator of the form

f̂x(νk) =
1

2L+ 1

L∑

l=−L

Px(νk + l/n) =
L∑

l=−L

wl Px(νk + l/n), (4.6)

when the periodogram is smoothed over 2L + 1 frequencies. The width of the interval

over which the frequency average is taken is called the bandwidth. Since there are 2L + 1

frequencies of width 1/n, the bandwidth B in this case is approximately B = (2L+1)/n. The

smoothing procedure improves the quality of the estimator for the spectrum since it is now

the average of L random variables each having a chi-squared distribution with 2 degrees of

freedom. The distribution of the smoothed estimator then will have df = 2(2L+ 1) degrees

of freedom. If the series is adjusted to the next highest power of 2, say n∗, the adjusted

degrees of freedom for the estimator will be df ∗ = 2(2L + 1)n/n∗ and the new bandwidth

will be B = (2L+ 1)/n∗.

Clearly, in (4.6), wl = 1/(2L+ 1), which is called the Daniell window (the corresponding
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spectral window is given by the Daniell kernel). One popular approach is to take wl to be

wl = w(νl)/n.

If w(x) = r−1
n sin2(r x/2)/ sin2(x/2), it is the well known Barlett or triangular window (the

corresponding spectral window is given by the Fejer kernel), where rn = ⌊n/(2L)⌋. If w(x) =

sin((r+0.5)x)/ sin(x/2), it is the rectangular window (the corresponding spectral window is

given by the Dirichlet kernel). See Brockwell and Davis (1991, §10.4) for more discussions.

4.1.3 Applications

The usage of the function fracdiff() is

fracdiff(x, nar = 0, nma = 0,

ar = rep(NA, max(nar, 1)), ma = rep(NA, max(nma, 1)),

dtol = NULL, drange = c(0, 0.5), h, M = 100)

This function can be used to compute the maximum likelihood estimators of the parameters

of a fractionally-differenced ARIMA(p, d, q) model, together (if possible) with their estimated

covariance and correlation matrices and standard errors, as well as the value of the maximized

likelihood. The likelihood is approximated using the fast and accurate method of Haslett

and Raftery (1989). To generate simulated long-memory time series data from the fractional

ARIMA(p, d, q) model, we can use the following function fracdiff.sim() and its usage is

fracdiff.sim(n, ar = NULL, ma = NULL, d,

rand.gen = rnorm, innov = rand.gen(n+q, ...),

n.start = NA, allow.0.nstart = FALSE, ..., mu = 0.)

An alternative way to simulate a long memory time series is to use the function arima.sim().

The menu for the package fracdiff can be downloaded from the web site at

http://cran.cnr.berkeley.edu/doc/packages/fracdiff.pdf

The function spec.pgram() in R calculates the periodogram using a fast Fourier trans-

form, and optionally smooths the result with a series of modified Daniell smoothers (moving

averages giving half weight to the end values). The usage of this function is

spec.pgram(x, spans = NULL, kernel, taper = 0.1,

pad = 0, fast = TRUE, demean = FALSE, detrend = TRUE,



CHAPTER 4. LONG MEMORY MODELS AND STRUCTURAL CHANGES 50

plot = TRUE, na.action = na.fail, ...)

We can also use the function spectrum() to estimate the spectral density of a time series

and its usage is

spectrum(x, ..., method = c("pgram", "ar"))

Finally, it is worth to pointing out that there is a package called longmemo for long-memory

processes, which can be downloaded from

http://cran.cnr.berkeley.edu/doc/packages/longmemo.pdf. This package also pro-

vides a simple periodogram estimation by function per() and other functions like llplot()

and lxplot() for making graphs for spectral density. See the menu for details.

Example 9.1: As an illustration, Figure 4.1 show the sample ACFs of the absolute series

of daily simple returns for the CRSP value-weighted (left top panel) and equal-weighted

(right top panel) indexes from July 3, 1962 to December 31, 1997 and the sample partial

autocorrelation function of the absolute series of daily simple returns for the CRSP value-

weighted (left middle panel) and equal-weighted (right middle panel) indexes. The ACFs

are relatively small in magnitude, but decay very slowly; they appear to be significant at

the 5% level even after 300 lags. There are only the first few lags for PACFs outside the

confidence interval and then the rest is basically within the confidence interval. For more

information about the behavior of sample ACF of absolute return series, see Ding, Granger,

and Engle (1993). To estimate the long memory parameter estimate d, we can use the

function fracdiff() in the package fracdiff in R and results are d̂ = 0.1867 for the absolute

returns of the value-weighted index and d̂ = 0.2732 for the absolute returns of the equal-

weighted index. To support our conclusion above, we plot the log smoothed spectral density

estimation of the absolute series of daily simple returns for the CRSP value-weighted (left

bottom panel) and equal-weighted (right bottom panel). They show clearly that both log

spectral densities decay like a log function and they support the spectral densities behavior

like (4.2).

4.2 Related Problems and New Developments

The reading materials are the papers by Ding, Granger, and Engle (1993), Krämer, Sibbert-

sen and Kleiber (2002), Zeileis, Leisch, Hornik, and Kleiber (2002), and Sibbertsen (2004a).
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Figure 4.1: Sample autocorrelation function of the absolute series of daily simple returns
for the CRSP value-weighted (left top panel) and equal-weighted (right top panel) indexes.
Sample partial autocorrelation function of the absolute series of daily simple returns for the
CRSP value-weighted (left middle panel) and equal-weighted (right middle panel) indexes.
The log smoothed spectral density estimation of the absolute series of daily simple returns
for the CRSP value-weighted (left bottom panel) and equal-weighted (right bottom panel)
indexes.

4.2.1 Long Memory versus Structural Breaks

It is a well known stylized fact that many financial time series such as squares or absolute

values of returns or volatilities, even returns themselves behave as if they had long memory;

see Ding, Granger and Engle (1993) and Sibbertsen (2004b). On the other hand, it is also well

known that long memory is easily confused with structural change, in the sense that the

slow decay of empirical autocorrelations which is typical for a time series with long memory

is also produced when a shortmemory time series exhibits structural breaks. Therefore it

is of considerable theoretical and empirical interest to discriminate between these sources of
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slowly decaying empirical autocorrelations.

Structural break is another type of nonstationarity arises when the population re-

gression function changes over the sample period. This may occur because of changes in

economic policy, changes in the structure of the economy or industry, events that change

the dynamics of specific industries or firm related quantities such as inventories, sales, and

production, etc. If such changes, called breaks, occur then regression models that neglect

those changes lead to a misleading inference or forecasting.

Breaks may result from a discrete change (or changes) in the population regression coef-

ficients at distinct dates or from a gradual evolution of the coefficients over a longer period

of time. Discrete breaks may be a result of some major changes in economic policy or in the

economy (oil shocks) while “gradual” breaks, population parameters evolve slowly over time,

may be a result of slow evolution of economic policy. The former might be characterized by

an indicator function and latter can be described by a smooth transition function.

If a break occurs in the population parameters during the sample, then the OLS regression

estimates over the full sample will estimate a relationship that holds on “average”. Now

the question is how to test breaks.

4.2.2 Testing for Breaks (Instability)

Tests for breaks in the regression parameters depend on whether the break date is know

or not. If the date of the hypothesized break in the coefficients is known, then the null

hypothesis of no break can be testing using a dummy or indicator variable. For example,

consider the following model:

yt =

{
β0 + β1yt−1 + δ1 xt + ut, if t ≤ τ ,
(β0 + γ0) + (β1 + γ1)yt−1 + (δ1 + γ2)xt + ut, if t > τ ,

where τ denotes the hypothesized break date. Under the null hypothesis of no break, H0 :

γ0 = γ1 = γ2 = 0, and the hypothesis of a break can be tested using the F-statistic. This is

called a Chow test proposed by Chow (1960) for a break at a known break date. Indeed,

the above structural break model can be regarded as a special case of the following trending

time series model

yt = β0(t) + β1(t) yt−1 + δ1(t)xt + ut.
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For more discussions, see Cai (2007). If there is a distinct break in the regression function,

the date at which the largest Chow statistic occurs is an estimator of the break date.

If there are more variables or more lags, this test can be extended by constructing binary

variable interaction variables for all the dependent variables. This approach can be modified

to check for a break in a subset of the coefficients. The break date is unknown in most of

the applications but you may suspect that a break occurred sometime between two dates,

τ0 and τ1. The Chow test can be modified to handle this by testing for break at all possible

dates t in between τ0 and τ1, then using the largest of the resulting F-statistics to test for a

break at an unknown date. This modified test is often called Quandt likelihood ratio (QLR)

statistic or the supWald or supF statistic:

supF = max{F (τ0), F (τ0 + 1), · · · , F (τ1)}.

Since the supF statistic is the largest of many F-statistics, its distribution is not the same

as an individual F-statistic. The critical values for supF statistic must be obtained from a

special distribution. This distribution depends on the number of restriction being tested, m,

τ0, τ1, and the subsample over which the F-statistics are computed expressed as a fraction

of the total sample size. Other types of F -tests are the average F and exponential F given

by

aveF =
1

τ1 − τ0 + 1

τ1∑

j=τ0

Fj

and

expF = log

(
1

τ1 − τ0 + 1

τ1∑

j=τ0

exp(Fj/2)

)
.

For details on modified F -tests, see the papers by Hansen (1992) and Andrews (1993).

For the large-sample approximation to the distribution of the supF statistic to be a good

one, the subsample endpoints, τ0 and τ1, can not be too close to the end of the sample. That

is why the supF statistic is computed over a “trimmed” subset of the sample. A popular

choice is to use 15% trimming, that is, to set for τ0 = 0.15T and τ1 = 0.85T . With 15%

trimming, the F-statistic is computed for break dates in the central 70% of the sample. Table

4.1 presents the critical values for supF statistic computed with 15% trimming. This table

is from Stock and Watson (2003) and you should check the book for a complete table. The
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Table 4.1: Critical Values of the QLR statistic with 15% Trimming

Number of restrictions (m) 10% 5% 1%
1 7.12 8.68 12.16
2 5.00 5.86 7.78
3 4.09 4.71 6.02
4 3.59 4.09 5.12
5 3.26 3.66 4.53
6 3.02 3.37 4.12
7 2.84 3.15 3.82
8 2.69 2.98 3.57
9 2.58 2.84 3.38
10 2.48 2.71 3.23

supF test can detect a single break, multiple discrete breaks, and a slow evolution of the

regression parameters.

Three classes of structural change tests (or tests for parameter instability) which have

been receiving much attention in both the statistics and econometrics communities but have

been developed in rather loosely connected lines of research are unified by embedding them

into the framework of generalized M-fluctuation tests (Zeileis and Hornik (2003)). These

classes are tests based on maximum likelihood scores (including the Nyblom-Hansen test),

on F statistics (supF, aveF, expF tests) and on OLS residuals (OLS-based CUSUM and

MOSUM tests; see Chu, Hornik and Kuan (1995), which is a special case of the so called

empirical fluctuation process, termed as efp in Zeileis, Leisch, Hornik, and Kleiber (2002)

and Zeileis and Hornik (2003)). Zeileis (2005) showed that representatives from these classes

are special cases of the generalized M-fluctuation tests, based on the same functional central

limit theorem, but employing different functionals for capturing excessive fluctuations. After

embedding these tests into the same framework and thus understanding the relationship

between these procedures for testing in historical samples, it is shown how the tests can

also be extended to a monitoring situation. This is achieved by establishing a general M-

fluctuation monitoring procedure and then applying the different functionals corresponding

to monitoring with ML scores, F statistics and OLS residuals. In particular, an extension of

the supF test to a monitoring scenario is suggested and illustrated on a real world data set.

In R, there are two packages strucchange developed by Zeileis, Leisch, Hornik, and
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Kleiber (2002) and segmented to provide several testing methods for testing breaks. They

can be downloaded at http://cran.cnr.berkeley.edu/doc/packages/strucchange.pdf

and http://cran.cnr.berkeley.edu/doc/packages/segmented.pdf, respectively.

Example 9.2: We use the data build-in in R for the minimal water flow of the Nile River

when planning the Ashwan Dam; see Hurst (1951), yearly data from 1871 to 1970 with 100

observations and the data name Nile. Also, we might use the data build-in the package

longmemo in R, yearly data with 633 observations from 667 to 1284 and the data name

NileMin. Here we use R to run the data set in Nile. As a result, the p-value for testing break
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Figure 4.2: Break testing results for the Nile River data: (a) Plot of F -statistics. (b) The
scatterplot with the breakpoint. (c) Plot of the empirical fluctuation process with linear
boundaries. (d) Plot of the empirical fluctuation process with alternative boundaries.

is very small (see the computer output) so that H0 is rejected. The details are summarized

in Figures 4.2(a)-(b). It is clear from Figure 4.2(b) that there is one breakpoint for the Nile

River data: the annual flows drop in 1898 because the first Aswan dam was built. To test

the null hypothesis that the annual flow remains constant over the years, we also compute

OLS-based CUSUM process and plot with standard linear and alternative boundaries in

Figures 4.2(c)-(d).
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Example 9.3: We build a time series model for real oil price (quarterly) listed in the tenth

column in file “ex9-3.csv”, ranged from the first quarter of 1959 to the third quarter of 2002.

Before we build such a time series model, we want to see if there is any structure change for

oil price. As a result, the p-value for testing break is very small (see the computer output)

so that H0 is rejected. The details are summarized in Figure 4.3. It is clear from Figure
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Figure 4.3: Break testing results for the oil price data: (a) Plot of F -statistics. (b) Scatter-
plot with the breakpoint. (c) Plot of the empirical fluctuation process with linear boundaries.
(d) Plot of the empirical fluctuation process with alternative boundaries.

4.3(b) that there is one breakpoint for the oil price. We also compute OLS-based CUSUM

process and plot with standard linear and alternative boundaries in Figures 4.3(c)-(d).

If we consider the quarterly price level (CPI) listed in the eighth column in file “ex9-3.csv”

(1959.1 – 2002.3), we want to see if there is any structure change for quarterly consumer

price index. The details are summarized in Figure 4.4. It is clear from Figure 4.4(b) that

there would be one breakpoint for the consumer price index. We also compute OLS-based

CUSUM process and plot with standard linear and alternative boundaries in Figures 4.4(c)-

(d). Please thank about the conclusion for CPI!!! Do you believe this result? If

not, what happen?
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Figure 4.4: Break testing results for the consumer price index data: (a) Plot of F -statistics.
(b) Scatterplot with the breakpoint. (c) Plot of the empirical fluctuation process with linear
boundaries. (d) Plot of the empirical fluctuation process with alternative boundaries.

Sometimes, you would suspect that a series may either have a unit root or be a trend

stationary process that has a structural break at some unknown period of time and you would

want to test the null hypothesis of unit root against the alternative of a trend stationary

process with a structural break. This is exactly the hypothesis testing procedure proposed

by Zivot and Andrews (1992). In this testing procedure, the null hypothesis is a unit root

process without any structural breaks and the alternative hypothesis is a trend stationary

process with possible structural change occurring at an unknown point in time. Zivot and

Andrews (1992) suggested estimating the following regression:

xt =

{
µ+ β t+ αxt−1 +

∑k

i=1 ci ∆xt−i + et, if t ≤ τ T ,

[µ+ θ] + [β t+ γ(t− TB)] + αxt−1 +
∑k

i=1 ci ∆xt−i + et, if t > τ T ,
(4.7)

where τ = TB/T is the break fraction. Model (4.7) is estimated by OLS with the break points

ranging over the sample and the t-statistic for testing α = 1 is computed. The minimum

t-statistic is reported. Critical values for 1%, 5% and 10% critical values are −5.34, −4.8

and −4.58, respectively. The appropriate number of lags in differences is estimated for each

value of τ . Please read the papers by Zivot and Andrews (1992) and Sadorsky (1999) for
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more details about this method and empirical applications.

4.2.3 Long Memory versus Trends

A more general problem than distinguishing long memory and structural breaks is in a

way the question if general trends in the data can cause the Hurst effect. The paper by

Bhattacharya et al (1983) was the first to deal this problem. They found that adding a

deterministic trend to a short memory process can cause spurious long memory. Now

the problem becomes more complicated for modeling long memory time series. For this

issue, we will follow Section 5 of Zeileis (2004a). Note that there are a lot of ongoing

research (theoretical and empirical) works in this area.

4.3 Computer Codes

#####################

# This is Example 9.1

#####################

z1<-matrix(scan("c:/res-teach/xiamen12-06/data/ex9-1.txt"),

byrow=T,ncol=5)

vw=abs(z1[,3])

n_vw=length(vw)

ew=abs(z1[,4])

postscript(file="c:/res-teach/xiamen12-06/figs/fig-9.1.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(3,2),mex=0.4,bg="light green")

acf(vw, ylab="",xlab="",ylim=c(-0.1,0.4),lag=400,main="")

text(200,0.38,"ACF for value-weighted index")

acf(ew, ylab="",xlab="",ylim=c(-0.1,0.4),lag=400,main="")

text(200,0.38,"ACF for equal-weighted index")

pacf(vw, ylab="",xlab="",ylim=c(-0.1,0.3),lag=400,main="")

text(200,0.28,"PACF for value-weighted index")

pacf(ew, ylab="",xlab="",ylim=c(-0.1,0.3),lag=400,main="")

text(200,0.28,"PACF for equal-weighted index")
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library(fracdiff)

d1=fracdiff(vw,ar=0,ma=0)

d2=fracdiff(ew,ar=0,ma=0)

print(c(d1$d,d2$d))

m1=round(log(n_vw)/log(2)+0.5)

pad1=1-n_vw/2^m1

vw_spec=spec.pgram(vw,spans=c(5,7),demean=T,detrend=T,pad=pad1,plot=F)

ew_spec=spec.pgram(ew,spans=c(5,7),demean=T,detrend=T,pad=pad1,plot=F)

vw_x=vw_spec$freq[1:1000]

vw_y=vw_spec$spec[1:1000]

ew_x=ew_spec$freq[1:1000]

ew_y=ew_spec$spec[1:1000]

scatter.smooth(vw_x,log(vw_y),span=1/15,ylab="",xlab="",col=6,cex=0.7,

main="")

text(0.03,-7,"Log Smoothed Spectral Density of VW")

scatter.smooth(ew_x,log(ew_y),span=1/15,ylab="",xlab="",col=7,cex=0.7,

main="")

text(0.03,-7,"Log Smoothed Spectral Density of EW")

dev.off()

##########################

# This is for Example 9.2

##########################

graphics.off()

library(strucchange)

library(longmemo) # not used

postscript(file="c:/res-teach/xiamen12-06/figs/fig-9.2.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light blue")

#if(! "package:stats" %in% search()) library(ts)

## Nile data with one breakpoint: the annual flows drop in 1898
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## because the first Ashwan dam was built

data(Nile)

## test whether the annual flow remains constant over the years

fs.nile=Fstats(Nile ~ 1)

plot(fs.nile)

print(sctest(fs.nile))

plot(Nile)

lines(breakpoints(fs.nile))

## test the null hypothesis that the annual flow remains constant

## over the years

## compute OLS-based CUSUM process and plot

## with standard and alternative boundaries

ocus.nile=efp(Nile ~ 1, type = "OLS-CUSUM")

plot(ocus.nile)

plot(ocus.nile, alpha = 0.01, alt.boundary = TRUE)

## calculate corresponding test statistic

print(sctest(ocus.nile))

dev.off()

#########################

# This is for Example 9.3

#########################

y=read.csv("c:/res-teach/xiamen12-06/data/ex9-3.csv",header=T,skip=1)

op=y[,10] # oil price

postscript(file="c:/res-teach/xiamen12-06/figs/fig-9.3.eps",

horizontal=F,width=6,height=6)

par(mfrow=c(2,2),mex=0.4,bg="light pink")

op=ts(op)

fs.op=Fstats(op ~ 1) # no lags and covariate

#plot(op,type="l")
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plot(fs.op)

print(sctest(fs.op))

## visualize the breakpoint implied by the argmax of the F statistics

plot(op,type="l")

lines(breakpoints(fs.op))

ocus.op=efp(op~ 1, type = "OLS-CUSUM")

plot(ocus.op)

plot(ocus.op, alpha = 0.01, alt.boundary = TRUE)

## calculate corresponding test statistic

print(sctest(ocus.op))

dev.off()

cpi=y[,8]

cpi=ts(cpi)

fs.cpi=Fstats(cpi~1)

print(sctest(fs.cpi))

postscript(file="c:/res-teach/xiamen12-06/figs/fig-9.4.eps",

horizontal=F,width=6,height=6)

#win.graph()

par(mfrow=c(2,2),mex=0.4,bg="light yellow")

#plot(cpi,type="l")

plot(fs.cpi)

## visualize the breakpoint implied by the argmax of the F statistics

plot(cpi,type="l")

lines(breakpoints(fs.cpi))

ocus.cpi=efp(cpi~ 1, type = "OLS-CUSUM")

plot(ocus.cpi)

plot(ocus.cpi, alpha = 0.01, alt.boundary = TRUE)

## calculate corresponding test statistic

print(sctest(ocus.cpi))

dev.off()
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