Localized Realized Volatility Modeling

Ying Chen
Wolfgang Karl Härdle
Uta Pigorsch

National University of Singapore
Humboldt-Universität zu Berlin
University of Mannheim
Volatility

Risk management, derivative pricing and hedging, portfolio selection, market making, etc. require accurate volatility estimates and forecasts, see Engle & Patton (2001).

High-frequency information \rightarrow Realized Volatility (RV):

- a consistent estimator of integrated volatility
- shows nice forecast properties

see Andersen, Bollerslev, Diebold and Labys (2001).
An important realized volatility fact

Figure 1: Sample autocorrelations of log. RV for different sample periods.
A dual view on the long memory diagnosis

- **The long memory point of view:**
 Volatility is generated by long memory processes, i.e. fractionally integrated, $I(d)$, processes.

- **The short memory point of view:**
 Volatility may equally well be generated by a short memory process with structural breaks, see e.g. Diebold and Inoue (2001), Granger and Hyung (2004).
 Example: GARCH model with changing parameters, see e.g. Mikosch and Stärică (2004), Čižek, Härdle and Spokoiny (2009).
Objectives

- Develop a localized modeling for RV
 - For a fixed time point, find a past time interval for which a local volatility model is a good approximator.
 - The localized model is then used to predict RV.
 - The time interval is determined by modern nonparametric statistical methods.

- Investigate the dual view on volatility phenomenon
Outline

1. Motivation ✓
2. Realized volatility
3. Localized realized volatility approach
4. Long memory models
5. Empirical analysis
6. Conclusion
Realized volatility

\[\widetilde{RV}_t = \sum_{j=1}^{M} r_{t,j}^2, \]

with \(r_{t,j} = p_{t,n_j} - p_{t,n_{j-1}}, j = 1, \ldots, M, \) and \(p_{t,n_j} \) the logarithmic price observed at time point \(n_j \) of trading day \(t \).

It converges to the quadratic variation for \(M \to \infty \), see Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2002b).

- Example: for exchange spot rates, \(M \approx 275,000 \) (Reuters)
- High-frequency data is subject to microstructure noise, see Martin et al. (2007)
Realized volatility based on kernel estimators

Tukey-Hanning kernel:

\[
RV_t = \widehat{RV}_{t,1} + \sum_{h=1}^{H^*} k \left(\frac{h - 1}{H^*} \right) (\gamma_{t,h} + \gamma_{t,-h})
\]

where

\[
k(x) = \sin^2 \left\{ \frac{\pi}{2} (1 - x)^2 \right\}, \text{ the best option in terms of efficiency}
\]

\[
\gamma_{t,h} = \sum_{j=1}^{M} r_{t,j} r_{t,j-h} \text{ is based on one-minute returns,}
\]

\[
H^* = 5.74 \frac{\overline{RV}_{t,15}}{\sqrt{M}} \text{ with } RV_{t,i} \text{ the realized variance estimator based on } i \text{ minute returns.}
\]

see Barndorff-Nielsen, Hansen, Lunde and Shephard (2008)
Data

Our empirical analysis is based on S&P500 index futures from January 2, 1985 to February 4, 2005.

<table>
<thead>
<tr>
<th>Series</th>
<th>Mean</th>
<th>Std.Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>LB(21)(^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV(_t)</td>
<td>1.09</td>
<td>8.70</td>
<td>55.59</td>
<td>3412</td>
<td>1204</td>
</tr>
<tr>
<td>log(RV(_t))</td>
<td>-0.53</td>
<td>0.89</td>
<td>0.53</td>
<td>4.99</td>
<td>4.69</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The critical value of this Ljung-Box test is 32.671.

Table 1: Descriptive statistics.
Figure 2: Kernel density estimates (solid line: log. RV, shaded area: point-wise 95% confidence intervals, dashed line: normal distribution).
Figure 3: Time evolvement of logarithmic realized volatility of the S&P500 index futures.
Localized realized volatility

LAR(p) model with parameter set \(\theta_t = (\theta_{0t}, \theta_{1t}, \ldots, \theta_{pt}, \sigma_t)^\top \):

\[
\log RV_t = \theta_{0t} + \sum_{i=1}^{p} \theta_{it} \log RV_{t-i} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_t^2),
\]

(1)

Suppose \(\theta_t \equiv \theta^* \) for \(t \in I = [1, T + h] \)

\[
\tilde{\theta}_\tau = \arg\max_{\theta \in \Theta} L(\log RV; I_\tau, \theta) = \arg\max_{\theta \in \Theta} \left\{ -\frac{s}{2} \log 2\pi - s \log \sigma \right. \\
- \frac{1}{2\sigma^2} \sum_{t=\tau-s}^{\tau-1} (\log RV_{t+h} - \theta_0 - \sum_{i=1}^{p} \theta_i \log RV_{t-i})^2 \}
\]

Goal: identify a local homogeneous interval \(I_\tau \) for time point \(\tau \).
Identify local homogeneity

At time point τ, choose a local homogeneous interval from

$$\{I^k_{\tau}\}_{k=1}^K = \{I^1_{\tau}, I^2_{\tau}, \ldots, I^K_{\tau}\}$$

where $I^k_{\tau} = [\tau - s_k, \tau)$ with $0 < s_k < \tau$, which leads to the best possible accuracy of estimation.

- Under local homogeneity $\theta_{\tau-s_k} = \cdots = \theta_{\tau} \equiv \theta^*$ within $I^k_{\tau} = [\tau - s_k, \tau)$:

 $\tilde{\theta}^{(k)}_{\tau}$ estimates θ^* at rate $1/\sqrt{s_k}$

- The modeling bias of approximating LAR(h) increases with s_k.

The optimal choice \hat{I}_{τ}: balances the bias and variation.

LRV
Localized realized volatility

\section*{Estimation under local homogeneity}

Given $I_\tau = [\tau - s, \tau)$, the local MLE is:

$$\hat{\theta}_\tau = \arg\max_{\theta \in \Theta} L(\log RV; I_\tau, \theta)$$

Under \textbf{local homogeneity}: $\theta_\tau \equiv \theta^*$, the fitted likelihood ratio measures the estimation risk:

$$LR(I_\tau, \hat{\theta}_\tau, \theta^*) = L(I_\tau, \hat{\theta}_\tau) - L(I_\tau, \theta^*).$$

(2)
Estimation under local homogeneity

The estimation risk $LR(I_\tau, \tilde{\theta}_\tau, \theta^*)$ is stochastically bounded:

$$E_{\theta^*} |LR(I_\tau, \tilde{\theta}_\tau, \theta^*)|^r \leq \xi_r.$$

It leads to the confidence set:

$$\mathcal{E}(\varepsilon) = \{\theta : LR(I_\tau, \tilde{\theta}_\tau, \theta^*) \leq \varepsilon\}$$

in the sense that $P_{\theta^*} \{\mathcal{E}(\varepsilon) \not\ni \theta^*\} \leq \alpha$, Polzehl and Spokoiny (2006).
Localized AR(p) model

Interval set \(\{ I^k \} \) for \(k = 1, \cdots, K \):

\[
I^1_T = [\tau - 1w, \tau) \quad I^2_T = [\tau - 1m, \tau) \quad \cdots \quad I^K_T = [\tau - 5y, \tau)
\]

\[
\tilde{\theta}_T^{(1)} \quad \tilde{\theta}_T^{(2)} \quad \cdots \quad \tilde{\theta}_T^{(K)}
\]

- The interval is growing in length.
- Local homogeneity is assumed at \(I^1_T \).
- Final estimate \(\hat{\theta}_T \) is based on a sequential testing.
Localized realized volatility

Sequential testing

Suppose that I_{k-1}^τ is a homogeneous interval: $\hat{\theta}_T^{(k-1)} = \tilde{\theta}_T^{(k-1)}$. The null hypothesis at step k:

$$H_0 : I_T^k \text{ is an homogeneous interval.}$$

Test homogeneity of I_T^k: $\hat{\theta}_T^k = \tilde{\theta}_T^k$ or terminates at I_T^{k-1}

Test: $\left| LR(I_T^k, \tilde{\theta}_T^k, \hat{\theta}_T^{k-1}) \right|^r \leq \zeta_k$, where ζ_k is critical value (CV).
Adaptive procedure

1. Initialization: \(\hat{\theta}_1^1 = \tilde{\theta}_1^1 \).

2. \(k = 1 \)

 while \(|LR(I_T, \tilde{\theta}_T^{k+1}, \hat{\theta}_T^k)|^r \leq \zeta_{k+1} \) and \(k < K \),

 \[
 \begin{align*}
 k & = k + 1 \\
 \hat{\theta}_T^k & = \tilde{\theta}_T^k
 \end{align*}
 \]

3. Final estimate: \(\hat{\theta}_T = \hat{\theta}_T^k \)
Parameter choice: Interval set

for every τ with the following interval lengths:

$$\{s_k\}_{k=1}^{13} = \{1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\},$$

where w denotes a week (5 days), m refers to one month (21 days) and y to one year (252 days).
Parameter choice: CV

Monte Carlo simulation: generate AR(p) processes with
\(\theta_t = \theta^* = (\theta_0, \theta_1, \ldots, \theta_p, \sigma) \) for all \(t \). For example AR(1) processes:

\[
\begin{align*}
\text{y}_t &= \theta^*_1 + \theta^*_2 \text{y}_{t-h} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \theta^*_3^2) \\
\text{y}_0 &= \theta^*_1 / (1 - \theta^*_2) \\
\end{align*}
\]

100 000 paths, each including 1261 observations

Choice of critical values:

Parametric case \(\theta_t \equiv \theta^* \):

\[
E_{\theta^*} \left| LR \left(I^K, \tilde{\theta}_t^K, \hat{\theta}_t^K(\zeta_1, \ldots, \zeta_K) \right) \right|^r \leq \xi_r \quad (3)
\]

\[
E_{\theta^*} \left| LR \left(I^k, \tilde{\theta}_t^k, \hat{\theta}_t^k(\zeta_1, \ldots, \zeta_k) \right) \right|^r \leq \frac{k - 1}{K - 1} \xi_r \quad (4)
\]
Localized realized volatility

Parameter choice: CV

Sequential choice of critical values

☐ Choice of $\zeta_1 = \infty$ initializing the procedure $\hat{\theta}_t^1(\zeta_1) = \tilde{\theta}_t^1$

☐ Choice of ζ_2 leading to $\hat{\theta}_t^k(\zeta_1, \zeta_2)$ by setting $\zeta_3 = \ldots = \zeta_K = \infty$:

$$E_{\theta^*}|LR(I^k, \tilde{\theta}_t^k, \hat{\theta}_t^k(\zeta_1, \zeta_2))|^r \leq \frac{1}{K-1}\xi_r, \quad k = 2, \ldots, K.$$
Localized realized volatility

Parameter choice: CV

Sequential choice of critical values

- Choice of ζ_3 leading to $\hat{\theta}^k_t(\zeta_1, \zeta_2, \zeta_3)$ by setting $\zeta_4 = \ldots = \zeta_K = \infty$:

$$E_{\theta^*} \left| LR \left(I^k, \tilde{\theta}^k_t, \hat{\theta}^k_t(\zeta_1, \zeta_2, \zeta_3) \right) \right|^r \leq \frac{2}{K - 1} \xi_r, \quad k = 3, \ldots, K.$$

- Choice of ζ_k leading to $\hat{\theta}^l_t(\zeta_1, \ldots, \zeta_k)$ by setting $\zeta_{k+1} = \ldots = \zeta_K = \infty$:

$$E_{\theta^*} \left| LR \left(I^k, \tilde{\theta}^l_t, \hat{\theta}^l_t(\zeta_1, \ldots, \zeta_k) \right) \right|^r \leq \frac{k - 1}{K - 1} \xi_r, \quad l = k, \ldots, K.$$
Parameter choice: CV and r

- The critical values (CV) depend on θ^* used in the Monte Carlo simulation:
 - local global CV: global constant parameter θ^* over the whole sample
 - local adaptive CV: time varying parameter θ^* using a moving window with fixed size.

- r: default choice 1/2
Critical values

Figure 4: CV for LAR(1) model with $r = 1/2$ and $\theta^* = (-0.116, 0.783, 0.553)^\top$ (global). Data source: Log RV of the S&P500 index futures.
Simulation on LAR(1)

Figure 5: Simulation results for scenarios S1 (changing parameter: θ_{0t}).
Simulation on LAR(1)

Figure 6: Simulation results for scenarios G1 (changing parameter: θ_{0t}).
Simulation on LAR(1)

Figure 7: Simulation results for scenarios S2 (changing parameter: θ_{1t}).
Simulation on LAR(1)

Figure 8: Simulation results for scenarios G2 (changing parameter: θ_{1t}).
Simulation on LAR(1)

Figure 9: Simulation results for scenarios S3 (changing parameter: σ_t).
Simulation on LAR(1)

Figure 10: Simulation results for scenarios G3 (changing parameter: σ_t).
Sensitivity analysis: Impact of parameters

<table>
<thead>
<tr>
<th>Choice of parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K = 9$</td>
<td>$K = 22$</td>
<td>$r = 1/3$</td>
<td>$r = 1$</td>
</tr>
<tr>
<td>$0.8 \theta^*$</td>
<td>0.9974</td>
<td>0.9726</td>
<td>1.0395</td>
<td></td>
</tr>
<tr>
<td>$1.2 \theta^*$</td>
<td>0.9974</td>
<td>0.9726</td>
<td>1.0395</td>
<td></td>
</tr>
</tbody>
</table>

Scenario S2

<table>
<thead>
<tr>
<th>R-RMSFE</th>
<th>0.9956</th>
<th>1.0128</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-DS</td>
<td>50% 75%</td>
<td>50% 75%</td>
</tr>
<tr>
<td>$t = 1501$</td>
<td>-1 -1</td>
<td>2 2</td>
</tr>
<tr>
<td>$t = 2001$</td>
<td>0 0</td>
<td>3 0</td>
</tr>
<tr>
<td>$t = 2401$</td>
<td>0 -</td>
<td>5 -</td>
</tr>
<tr>
<td>$t = 2801$</td>
<td>>344 -</td>
<td>>344 -</td>
</tr>
</tbody>
</table>

Scenario G2

<table>
<thead>
<tr>
<th>R-RMSFE</th>
<th>0.9946</th>
<th>1.0132</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-DS</td>
<td>50% 75%</td>
<td>50% 75%</td>
</tr>
<tr>
<td>$t = 1601$</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$t = 2001$</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$t = 2501$</td>
<td>0 -</td>
<td>0 -</td>
</tr>
<tr>
<td>$t = 2801$</td>
<td>>399 >54</td>
<td>>399 >54</td>
</tr>
</tbody>
</table>

Reported are the relative one-step-ahead RMSFEs and the relative detections speeds (R-DS) in the scenarios S2 and G2 for different choices of the parameters.
Sensitivity analysis: Model misspecification

<table>
<thead>
<tr>
<th>DGP:</th>
<th>local const.</th>
<th>LAR(2)</th>
<th>LAR(5)</th>
<th>LAR(10)</th>
<th>ARFIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\text{DGP}})</td>
<td>(\theta_{0t})</td>
<td>1.0225</td>
<td>0.6247</td>
<td>0.5664</td>
<td>0.5568</td>
</tr>
<tr>
<td>LAR(1)</td>
<td>(\theta_{2t})</td>
<td>0.9339</td>
<td>0.6293</td>
<td>0.5848</td>
<td>0.5724</td>
</tr>
</tbody>
</table>

Table 2: Reported are the average RMSFEs based on the LAR(1) procedure and the estimated data generating processes, \(\hat{\text{DGP}} \).
The ARFIMA model

The autoregressive fractionally integrated moving average, ARFIMA\((p, d, q)\), model:

\[
\phi(L)(1 - L)^d(\log RV_t - \mu) = \psi(L)u_t,
\]

with \(\phi(L) = 1 - \phi_1 L - \cdots - \phi_p L^p, \psi(L) = 1 + \psi_1 L + \cdots + \psi_q L^q\), \(L\) denoting the lag operator, \(d \in (0, 0.5)\) and \(u_t \overset{iid}{\sim} N(0, \sigma^2)\), see e.g. Andersen, Bollerslev, Diebold and Labys (2003).
The HAR model

The heterogeneous autoregressive, HAR, model:

\[
\log RV_t = \alpha_0 + \alpha_d \log RV_{t-1} + \alpha_w \log RV_{t-5:t-1} \\
+ \alpha_m \log RV_{t-21:t-1} + u_t
\]

with the multiperiod realized volatility components defined by

\[
RV_{t+1-k:t} = \frac{1}{k} \sum_{j=1}^{k} RV_{t-j}
\]

and \(u_t \overset{iid}{\sim} N(0, \sigma^2) \), see Corsi (2004).
Empirical evidence

- Although the HAR model is formally no long memory model, it seems to provide a good approximation of the long range dependence.
- The HAR and ARFIMA models exhibit similar in-sample and out-of-sample performance.
- Both strongly outperform conventional volatility models.
Forecast setup

- The first five years of the S&P 500 index futures data serve as *training set*.
- The remaining data serves as *forecast evaluation period* (January 2, 1990 to February 4, 2005).
Forecast setup

 Setup for LAR(1) models:

- Consider 5 sets of critical values: the global ones and the adaptive ones based on a sample period of 1 month, 6 months, 1 year and 2.5 years.

- The interval of homogeneity is always selected based on the following set of interval lengths:

\[
\{s_k\}^{13}_{k=1} = \{1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\}
\]}
Figure 11: Boxplot of the homogenous intervals selected by the LAR(1) procedure based on different sets of critical values.
Forecast setup

Setup for ARFIMA, HAR and AR(1) models:

- All forecasts are based on an ARFIMA(2, d, 0) model (as indicated by the AIC and BIC using the full sample period).
- Estimation and prediction is performed using a rolling window scheme with different window sizes, i.e.
 \{3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\}.
- Same setup is used to assess the predictability of the HAR model and a constant AR(1) model, i.e.
 \[
 \log RV_t = \alpha_0 + \alpha_1 \log RV_{t-1} + u_t \quad \text{with} \quad u_t \overset{iid}{\sim} N(0, \sigma^2).
 \]
Figure 12: one-day-ahead prediction.
Empirical analysis

![Financial events & selected intervals](image)

Figure 13: Financial events & selected intervals.
<table>
<thead>
<tr>
<th>crit. values</th>
<th>LAR(1)</th>
<th>sample size</th>
<th>AR(1)</th>
<th>ARFIMA</th>
<th>HAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>local adaptive 1m</td>
<td>0.4858</td>
<td>3m</td>
<td>0.5149</td>
<td>0.5328</td>
<td>0.5381</td>
</tr>
<tr>
<td>local adaptive 6m</td>
<td>0.4811</td>
<td>6m</td>
<td>0.5288</td>
<td>0.5225</td>
<td>0.5240</td>
</tr>
<tr>
<td>local adaptive 1y</td>
<td>0.4876</td>
<td>1y</td>
<td>0.5398</td>
<td>0.5178</td>
<td>0.5185</td>
</tr>
<tr>
<td>local adaptive 2.5y</td>
<td>0.4916</td>
<td>1.5y</td>
<td>0.5462</td>
<td>0.5143</td>
<td>0.5172</td>
</tr>
<tr>
<td>local global</td>
<td>0.5014</td>
<td>2y</td>
<td>0.5509</td>
<td>0.5133</td>
<td>0.5158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5y</td>
<td>0.5555</td>
<td>0.5132</td>
<td>0.5153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3y</td>
<td>0.5574</td>
<td>0.5123</td>
<td>0.5155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5y</td>
<td>0.5607</td>
<td>0.5132</td>
<td>0.5164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4y</td>
<td>0.5649</td>
<td>0.5129</td>
<td>0.5171</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5y</td>
<td>0.5686</td>
<td>0.5130</td>
<td>0.5173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5y</td>
<td>0.5712</td>
<td>0.5129</td>
<td>0.5176</td>
</tr>
</tbody>
</table>

Table 3: Root mean square forecast errors.
<table>
<thead>
<tr>
<th>crit. values</th>
<th>LAR(1)</th>
<th>sample size</th>
<th>AR(1)</th>
<th>ARFIMA</th>
<th>HAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>local adaptive 1m</td>
<td>0.3667</td>
<td>3m</td>
<td>0.3900</td>
<td>0.3978</td>
<td>0.4025</td>
</tr>
<tr>
<td>local adaptive 6m</td>
<td>0.3654</td>
<td>6m</td>
<td>0.3987</td>
<td>0.3902</td>
<td>0.3862</td>
</tr>
<tr>
<td>local adaptive 1y</td>
<td>0.3704</td>
<td>1y</td>
<td>0.4057</td>
<td>0.3860</td>
<td>0.3857</td>
</tr>
<tr>
<td>local adaptive 2.5y</td>
<td>0.3748</td>
<td>1.5y</td>
<td>0.4103</td>
<td>0.3836</td>
<td>0.3843</td>
</tr>
<tr>
<td>local global</td>
<td>0.3824</td>
<td>2y</td>
<td>0.4136</td>
<td>0.3826</td>
<td>0.3836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5y</td>
<td>0.4157</td>
<td>0.3816</td>
<td>0.3839</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3y</td>
<td>0.4177</td>
<td>0.3814</td>
<td>0.3843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5y</td>
<td>0.4202</td>
<td>0.3820</td>
<td>0.3859</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4y</td>
<td>0.4238</td>
<td>0.3817</td>
<td>0.3851</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5y</td>
<td>0.4273</td>
<td>0.3821</td>
<td>0.3854</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5y</td>
<td>0.4300</td>
<td>0.3819</td>
<td>0.3858</td>
</tr>
</tbody>
</table>

Table 4: Mean absolute forecast error.
Empirical results

- **Mincer–Zarnowitz regression:**
 Evaluate the forecasting performance of the different models based on Mincer–Zarnowitz regressions:

 \[
 \log RV_t = \alpha + \beta \widehat{\log RV}_{t,i} + \nu_t
 \]

 with \(\widehat{\log RV}_{t,i} \) denoting the log. realized volatility forecast of model \(i \).

 - Assess \(R^2 \) of the regression.
 - Test on *unbiasedness* of the different forecasts:
 \(H_0 : \alpha = 0 \) and \(\beta = 1 \).
<table>
<thead>
<tr>
<th>Model</th>
<th>α</th>
<th>β</th>
<th>p-value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>global LAR</td>
<td>-0.0130</td>
<td>1.0128</td>
<td>0.1007</td>
<td>0.6959</td>
</tr>
<tr>
<td></td>
<td>(0.0125)</td>
<td>(0.0142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adaptive LAR, 1y</td>
<td>0.0025</td>
<td>1.0014</td>
<td>0.9780</td>
<td>0.7117</td>
</tr>
<tr>
<td></td>
<td>(0.0123)</td>
<td>(0.0127)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1y AR(1)</td>
<td>-0.0010</td>
<td>1.0117</td>
<td>0.6002</td>
<td>0.4669</td>
</tr>
<tr>
<td></td>
<td>(0.0144)</td>
<td>(0.0158)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5y AR(1)</td>
<td>0.0221</td>
<td>1.0367</td>
<td>0.2216</td>
<td>0.6052</td>
</tr>
<tr>
<td></td>
<td>(0.0162)</td>
<td>(0.0213)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1y ARFIMA</td>
<td>0.0008</td>
<td>1.0011</td>
<td>0.9962</td>
<td>0.6747</td>
</tr>
<tr>
<td></td>
<td>(0.0119)</td>
<td>(0.0132)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5y ARFIMA</td>
<td>0.0009</td>
<td>1.0154</td>
<td>0.4907</td>
<td>0.6811</td>
</tr>
<tr>
<td></td>
<td>(0.0115)</td>
<td>(0.0129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1y HAR</td>
<td>-0.0076</td>
<td>0.9907</td>
<td>0.7509</td>
<td>0.6742</td>
</tr>
<tr>
<td></td>
<td>(0.0128)</td>
<td>(0.0128)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5y HAR</td>
<td>0.0145</td>
<td>1.0237</td>
<td>0.2036</td>
<td>0.6756</td>
</tr>
<tr>
<td></td>
<td>(0.0119)</td>
<td>(0.0133)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Mincer–Zarnowitz regression results.
Empirical results

Test on equal forecast performance:
Diebold–Mariano test on equal MSFEs:

\[e_{t,LAR}^2 - e_{t,i}^2 = \mu + \nu_t \]

with \(e_{t,i} \) denoting the forecast error of model \(i \).

\[H_0 : \mu = 0. \]
Table 6: Diebold–Mariano test results.

<table>
<thead>
<tr>
<th>Global LAR compared to</th>
<th>μ</th>
<th>Adaptive LAR, 1y compared to</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1y AR(1)</td>
<td>-0.0400</td>
<td>1y AR(1)</td>
<td>-0.0535</td>
</tr>
<tr>
<td></td>
<td>(0.0096)</td>
<td></td>
<td>(0.0097)</td>
</tr>
<tr>
<td>5y AR(1)</td>
<td>-0.0141</td>
<td>5y AR(1)</td>
<td>-0.0546</td>
</tr>
<tr>
<td></td>
<td>(0.0109)</td>
<td></td>
<td>(0.0111)</td>
</tr>
<tr>
<td>1y ARFIMA</td>
<td>-0.0168</td>
<td>1y ARFIMA</td>
<td>-0.0304</td>
</tr>
<tr>
<td></td>
<td>(0.0109)</td>
<td></td>
<td>(0.0108)</td>
</tr>
<tr>
<td>5y ARFIMA</td>
<td>-0.0118</td>
<td>5y ARFIMA</td>
<td>-0.0253</td>
</tr>
<tr>
<td></td>
<td>(0.0109)</td>
<td></td>
<td>(0.0109)</td>
</tr>
<tr>
<td>1y HAR</td>
<td>-0.0175</td>
<td>1y HAR</td>
<td>-0.0310</td>
</tr>
<tr>
<td></td>
<td>(0.0104)</td>
<td></td>
<td>(0.0103)</td>
</tr>
<tr>
<td>5y HAR</td>
<td>-0.0165</td>
<td>5y HAR</td>
<td>-0.0258</td>
</tr>
<tr>
<td></td>
<td>(0.0104)</td>
<td></td>
<td>(0.0103)</td>
</tr>
</tbody>
</table>
Long-term forecast setup

- Setup for LAR(1) and AR*(1) model

\[
\begin{align*}
\log RV_{t+10} &= \theta_1 + \theta_2 \log RV_t + \varepsilon_t^* \\
\log RV_{t+10} &= \theta_1 t + \theta_2 t \log RV_t + \varepsilon_t
\end{align*}
\]

- Consider 5 sets of critical values: the global ones and the adaptive ones based on a sample period of 1 month, 6 months, 1 year and 2.5 years.

- The interval of homogeneity is always selected based on the following set of interval lengths:

\[
\{s_k\}_{k=1}^{13} = \{1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y, 3y, 3.5y, 4y, 4.5y, 5y\}
\]
Figure 14: 10-day-ahead prediction.
Table 7: Root mean square forecast errors for 10-day-ahead prediction.

<table>
<thead>
<tr>
<th>Crit. values</th>
<th>LAR(10)</th>
<th>Sample size</th>
<th>AR*(1)</th>
<th>ARFIMA</th>
<th>HAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local adaptive 1m</td>
<td>0.4615</td>
<td>3m</td>
<td>0.5873</td>
<td>0.6463</td>
<td>0.7375</td>
</tr>
<tr>
<td>Local adaptive 6m</td>
<td>0.4873</td>
<td>6m</td>
<td>0.6115</td>
<td>0.6352</td>
<td>0.6581</td>
</tr>
<tr>
<td>Local adaptive 1y</td>
<td>0.4945</td>
<td>1y</td>
<td>0.6282</td>
<td>0.6286</td>
<td>0.6349</td>
</tr>
<tr>
<td>Local adaptive 2.5y</td>
<td>0.5056</td>
<td>1.5y</td>
<td>0.6399</td>
<td>0.6214</td>
<td>0.6263</td>
</tr>
<tr>
<td>Local global</td>
<td>0.5884</td>
<td>2y</td>
<td>0.6504</td>
<td>0.6235</td>
<td>0.6249</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5y</td>
<td>0.6559</td>
<td>0.6214</td>
<td>0.6232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3y</td>
<td>0.6623</td>
<td>0.6207</td>
<td>0.6237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5y</td>
<td>0.6678</td>
<td>0.6215</td>
<td>0.6252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4y</td>
<td>0.6751</td>
<td>0.6214</td>
<td>0.6270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5y</td>
<td>0.6817</td>
<td>0.6222</td>
<td>0.6281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5y</td>
<td>0.6888</td>
<td>0.6240</td>
<td>0.6305</td>
</tr>
</tbody>
</table>
Conclusion

- Investigate the dual view on the long memory diagnosis of volatility.
- The long memory phenomenon can alternatively be described by parsimonious short memory models with structural breaks.
- Identification of structural breaks by a localized realized volatility model.
Conclusion

The empirical results show that:

- the localized approach outperforms long memory-type models and constant AR models in terms of predictability.
- an adaptive choice of the critical values (and a decrease in the underlying sample period) improves the estimation and forecast accuracy of the localized approach.
References

Andersen, T. G. and Bollerslev, T.
Answering the skeptics: yes, standard volatility models do provide accurate forecasts

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P.
The distribution of realized exchange rate volatility

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P.
Modeling and forecasting realized volatility
References

Barndorf-Nielsen, O. E. and Shephard, N.
Estimating quadratic variation using realized variance

Barndorf-Nielsen, O.E., Hansen, P. R., Lunde, A. and Shephard, N.
Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise
Econometrica, 76, 1481-1536, 2008.
Čížek, P. and Härdle, W. and Spokoiny, V.
Adaptive pointwise estimation in time-inhomogeneous time-series models

Corsi, F.
A simple long memory model of realized volatility

Diebold, F. X. and Inoue, A.
Long memory and regime switching
References

Granger, C. W. J. and Hyung, N.
Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns

Mikosch, T. and Stărică, C.
Changes of structure in financial time series and the GARCH model