This paper considers semiparametric \sqrt{n} consistent estimation of the parameters of a general panel data transformation model with fixed effects under various forms of censoring, without parametric specification for the transformation function or the error distribution. While the approach in Abrevaya (1999) is \sqrt{n} consistent, it is not applicable when censoring is present. For the case with fixed censoring, existing approaches such as Manski (1987) and Abrevaya (2000) apply, but they converge at rates slower than \sqrt{n}, thus possessing zero efficiency compared with estimators that converge at the \sqrt{n} rate. While the approaches by Honore (1992) and Ridder and Tunali (1999) produce \sqrt{n} consistent estimators under fixed and independent censorings, they require either the error distribution or the transformation function completely known. Our \sqrt{n} consistent estimator for the fixed censoring case could be extended to the cases with independent and dependent censoring. For the dependent censoring case, in contrast to our method, the existing approaches (e.g., Horowitz and Lee (2003), Lee (2005) and Das and Ying (2005)) require parametric specification for the transformation function or the error distribution.